Steam turbines and gas turbines occupy parallel but different market segments. The turbine market will grow at a CAGR of 4.4%, due to the continued increase in coal-fired and gas-fired power capacity, industrial expansion in the developing world and tightening AQ controls. China and India are pruning back on new coal-fired plants, but they are not stopping. Turkey, Indonesia and Bangladesh are going large on coal, and the United States is up-grading large chunks of its big coal-fired fleet to supercritical technology. This activity means more, advanced class steam turbines. Developments of gas turbines are expected in China.

Highlights.

- Market estimates and forecasts of sales of steam turbines and gas turbines in $ to 2022.
- About half the population of each type of turbine is used in power generation - half in oil & gas, industry and marine - with aviation using aeroderivative GTs.
- China produces over half the world’s steam turbines, with Shanghai Electric, Dongfangle and Harbin Electric the global leaders.
- GE and Siemens dominate the GT market, but new threats to their dominance are emerging.
- Production and off-take of GTs have lagged far behind in China, because of the supremacy of coal. This is changing as the country expands its relatively small gas share. Shanghai Electric and Harbin have already bought into GT technology with acquisitions and partnerships.
- Mergers and acquisitions are described and newcomers are flagged.
- There have been significant advances in turbine technologies, with G- and H-class STs and GTs meeting supercritical criteria of higher temperature and pressure. This has eroded the long-held dominance of F-class turbines and G- and H-class turbines are growing their shares.
- To meet energy and environmental conservation targets, efficiency is the dominant criterion for turbines today.
- Unexpectedly, instead of closing down inefficient coal power plants, many US owners have been converting them to supercritical base-load plants with G-or H-class turbines.
- Despite the rise of the advanced G- and H-class turbines, the long established F-class retains popularity among a segment of owners, as a well-established, proven performer, suitable for plants up to 500 MW.
- Aeroderivative turbines have been used for peaking but substantial new improvements in start-up times and ramp rates are making frame turbines more competitive for peaking.
Steam and Gas Turbine Report Ed1 2018

The following companies feature in the report, with separate profiles and as participants in an extensive section detailing mergers, acquisitions and partnerships: GE, Siemens, Alstom, MHPS (Mitsubishi Hitachi Power Systems), Toshiba, Doosan, Ansaldo Energia, Rolls-Royce, Dresser-Rand, BHEL, Shanghai Electric, Harbin Electric, Dongfang and Hangzhou Electric.

StatPlan reports have been purchased or studies commissioned by Siemens, ABB, BASF, GE, Schneider Electrical, Reinhausen Machinenfabriken, Toshiba, Hitachi, Thyssen, Softbank, Rolls-Royce, Babcock, Nanoelectro and Reuters, among others.

The research for this report was carried out with extensive desk research and reference to StatPlan’s own databases, together with interviews conducted with industry executives in the United States, Europe and China.

56 pages.

Price of the PDF report : GBP 800 / USD 1,050.
Table of Contents

EXECUTIVE SUMMARY .. 6

1.**INTRODUCTION TO TURBINES AND ENGINES** .. 13
 - Steam turbine .. 13
 - Gas turbines .. 13
 - Microturbine .. 13
 - Water turbine ... 13
 - Wind turbine .. 14
 - Reciprocating engine ... 14
 - Types of gas turbine ... 14
 - Heavy duty frame gas turbines (HDGT) .. 14
 - Industrial frame gas turbine .. 15
 - Aeroderivative gas turbines .. 15
 - Types of steam turbine .. 15
 - Extraction condensing turbine .. 16
 - Back pressure turbine ... 16
 - Sizes of steam turbines .. 17
 - Utility steam turbines ... 18
 - Industrial steam turbines ... 18

2.**FRAME AND AERODERIVATIVE GAS TURBINES** .. 19
 - Heavy duty gas turbine (HDGT) .. 19
 - D to E class .. 19
 - F class .. 19
 - G to J class .. 19
 - The evolution of HDGT shares in North America ... 20
 - The future for F-class GTs ... 21
 - Aeroderivative versus frame GTs .. 22

3.**MARKET SIZE AND MARKET SHARES** .. 24
 - End users ... 24
 - Market shares ... 25
Steam and Gas Turbine Report Ed1 2018

Figures

Figure 1: Extraction condensing turbine ... 16
Figure 2: Non-condensing (Back-Pressure) steam turbine 17
Figure 3: The evolution in share of D/E, F and G/H/J class gas turbines in North America 20
Figure 4: Industry dynamics, E-class to H-class gas turbines > 40 MW 22
Figure 5: Proportions of turbine capacity for power generation and mechanical drive,
by output capacity in MW ... 24
Figure 6: Gas and steam turbine shares of end-users .. 25
Figure 7: Steam turbine sales by country in units, 2017 ... 26
Figure 8: Steam turbine global market shares in units, 2017 26
Figure 9: Gas turbine sales by country in units, 2017 ... 27
Figure 10: Gas turbine global market shares in units, 2017 ... 28
Figure 11: Total coal-fired power plant capacity by age and performance 31
Figure 12: Penetration of supercritical technology in power plants 31
Figure 13: Annual installed capacity of global coal fired plant capacity 32
Figure 14: GE steam turbines .. 33
Figure 15: Mitsubishi steam turbines ... 37
Figure 16: GE GT models ... 39
Figure 17: Siemens GT models ... 40
Figure 18: MHI GT models .. 40
Figure 19: Development of MGPS gas turbine .. 41
Figure 20: Ansaldo GT models .. 42

Tables

Table 1: Fuels used by different types of turbine ... 14
Table 2: Comparison between aeroderivative and frame turbine peaking characteristics ... 23
Table 3: Turbine sales in nominal $ million, 2018 to 2022 ... 24
Table 4: Doosan Skoda steam turbines ... 36
Table 5: BHEL steam turbines .. 36
Aeroderivative versus frame GTs

Aero and aeroderivative gas turbine engines are likely to be built in modular construction. This means that one module of the gas turbine engine may be removed from service and the other modules left in place. A substitute module may be inserted in place of the removed module so the gas turbine can resume service. A frame engine is more likely to be constructed in a non-modular format. If part of a frame engine has serious problems, it is likely that the entire engine will be down for maintenance.

Across power markets, there are needs for new peaking capacity, and all markets value the main characteristics of a peaking facility; quick start/ramp rate, emissions compliance, flexible operation, and output. Historically, aeroderivative gas turbines have been the mainstay of the peaking market, with characteristics that match the demands. With the advancements in frame machine technology and the projections of low gas prices, this not be so clear cut anymore.

Peaking plants are valued
MARKET SIZE AND MARKET SHARES

Turbine sales are estimated at $XX billion in 2018, rising at a cagr of XX% to $XX billion in nominal values in 2022. Steam turbines will amount to $XX billion in 2018 and gas turbines $XX billion. STs will rise at a cagr of XX% to $XX billion in 2022 and GTs at a cagr of XX% to $XX billion.

The ST market, although larger than GTs, is being affected by government policies to cut down on coal generation, notably in China and India, to meet environmental targets.

Table 3: Turbine sales in nominal $ million, 2018 to 2022

<table>
<thead>
<tr>
<th>End users</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>cagr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam turbines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas turbines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All turbines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End users

The industry reports for turbines and reciprocating engine orders worldwide, excluding Chinese companies, have recorded a steady increase on the proportion of orders for power generation and a decline in the proportion for mechanical drive. Although both categories have demonstrated a lot of lumpiness and have fluctuated a great deal, this has been driven more by the greater increase in the volume of capacity for power generation than for mechanical drive.

The category of power generation includes all producers of power; utilities, merchant and industrial generators. The figures do not, therefore, reflect a break of utilities versus industry, since industry uses turbines for both power generation and mechanical drive for industrial process.

Figure 5: Proportions of turbine capacity for power generation and mechanical drive, by output capacity in MW
In the following figure, power generation refers to utility generation. The other four categories, Oil & Gas, Industry, Marine and Aviation include both power generation and mechanical drive.

Figure 6: Gas and steam turbine shares of end-users

Market shares

Steam turbines

China has XX% of the world’s installed coal generating capacity, compared with only XX% of global gas capacity. This has led to China’s leading position as a manufacturer of steam turbines, with about half the world’s ST production, but a much smaller share of gas turbine production. The steam turbine market in China is dominated by three major manufacturers; Shanghai Electric Group, China Dongfang Electric Corporation, and Harbin Electric Co, which account for over 80% of the total steam turbine production in China.

GE steam turbines equip XX% of the world’s combined-cycle plants, XX% of fossil power plants, and XX% of the world’s nuclear power plants. This has been increased with the Alstom base of XX GW of steam turbine capacity. This GE figure
ORDER FORM

Please provide the following information and scan/email or mail to StatPlan Energy Research:

First Name: __

Second Name: __________________________ Title: Mr, Mrs, Ms, Dr, Other

Company: __

Address: __ City:

Country: __________________________ Post Code: __________________________ State/Province:

Telephone: __________________________ Email: __________________________

TICK BOX FOR LICENCE REQUIRED

SUL - Single user licence (1-4 users) ☐ Multi user licence (5-20 users) = 1½ x SUL ☐ Enterprise licence (Unlimited use) = 2 ½ x SUL ☐

<table>
<thead>
<tr>
<th>Report Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UK/EU: Please quote VAT Number: __________________________

UK customers only, please add VAT at 20% __________________________

TOTAL ORDER VALUE __________________________

These prices are for electronic copies only. For 2 Hard Copies add £120, Europe - £180, Rest of World - £190. Please call +44 (0)208 871 2752 if you have a query.

PAYMENT OPTIONS

Credit Card ☐ Cheque enclosed ☐ Bill me ☐

Card Number…………………………………………Expiry Date…………………………CVC/Signature code (last 3 digits on back of card)…………………………

Date…………………………………………Signature……………………………………………………………………………………………………

If paying by credit card please order from the StatPlan website direct or provide credit card details by letter or telephone.

Please email order form toE.Blauvelt@statplanenergy.com

Or post toStatPlan Energy Research, 8 Quarry Road, London, SW18 2QJ, United Kingdom.

Invoice required: Please provide an appropriate Purchase Order PO number: ..

Terms and Conditions of Sale are available on our website www.statplanenergy.com