EXECUTIVE SUMMARY

PART 1 ELECTRICITY TRANSMISSION TOWERS AND MONOPOLES

Chapter 1 - INSTALLED BASE OF ELECTRICITY TRANSMISSION TOWERS & MONOPOLES

The global installed base of transmission towers and monopoles is analysed in numbers of towers by region and country and forecast from 2016 to 2020.

Chapter 2 - ELECTRICITY TRANSMISSION TOWERS MARKET

The global demand in $ value for towers and monopoles is analysed by region and country and forecast from 2016 to 2020.

Chapter 3 - LONG TERM DEMAND CYCLES FOR ELECTRICITY TOWERS AND MONOPOLES

The growth of transmission line networks is a fundamental driver of the markets for towers and poles, both in line length and voltage. Long term demand is a function of the age of the towers and the expansion of the networks.

Chapter 4 - MONOPOLES vs. LATTICE TOWERS

The March of the Monopoles - long established in the US, EHV monopoles are breaking into new markets with innovative new designs, replacing lattice towers, especially in Europe. This trend is driven by pressure on rights-of-way, visual criticism of lattice towers and public fears of EMF dangers to children.

Chapter 5 - TYPES OF TOWER OR PYLONS

Lattice towers are designed for different functions and stresses and there is wide variation in cost; suspension towers, tension towers, angle suspension towers, dead-end towers, transposition towers. Tower installation is a dangerous and complex procedure and has an impact on costs.

Chapter 6 - ELEMENTS OF LATTICE TOWER DESIGN

Many designs of transmission tower exist and are used in different situations. Some of the basics are discussed here with diagrams of designs and the different elements of a tower.

Chapter 7 - SERVICE LIFE AND MAINTENANCE OF STEEL LATTICE TOWERS AND MONOPOLES

The service life of steel monopoles and lattice towers can be severely curtailed after a period of time without preventive treatment. Deterioration goes through three identifiable stages before the structure collapses, each with cost implications.

Chapter 8 - COMPETITIONS FOR TOWER DESIGN

Increasing public awareness of and resistance to lattice towers is leading to imaginative designs for new poles and towers.
Chapter 9 - MANUFACTURERS OF LATTICE TOWERS AND MONOPOLES

Production capacity of the 34 major producers of lattice towers and monopoles is tabulated with market shares. The leading companies are profiled.

PART 2 ELECTRICITY, TELEPHONE & STREET LIGHTING POLES

Chapter 10 - UTILITY POLES INSTALLED BASE BY COUNTRY AND UTILITY

The installed base of poles – electricity, telegraph and street lights – is analysed by country for 2016, with a split by voltage levels; MV sub-transmission, primary distribution and LV secondary distribution and reticulation. Street lights have been included for the first time.

Chapter 11 - INSTALLED BASE OF POLES BY COUNTRY AND MATERIAL

The installed base of utility poles is analysed by material - wood, steel, concrete, composite – and analysed by country.

Chapter 12 - GROWTH OF THE POLE POPULATION

The total installed base of poles is forecast from 2016 to 2020 by country.

Chapter 13 - DEMAND FOR POLES IN UNITS

Demand for utility poles in units is tabulated by region and country and forecast from 2016 to 2020.

Chapter 14 - DEMAND FOR POLES BY VALUE

Demand for utility poles in $ value is tabulated by region and country and forecast from 2016 to 2020.

Chapter 15 - THE VALUE CHAIN – THE MARGIN STACK

The value chain is a continuous process of adding cost to a product. Depending where you position it, the value changes, the end user’s capex being some five times the cost of original materials. The value chain is analysed with different mark-ups for each of six stages.

Chapter 16 - NATIONAL MARKETS FOR ELECTRICITY AND TELEPHONE DISTRIBUTION POLES

The statistics for utility poles are not very systematic and are variable in extent from country to country. With wide searching a large amount of data has been accumulated and StatPlan has assembled and maintains an ever-increasing databank for this topic.

Chapter 17 - STREET LIGHTING

Street lighting is a hot topic, because of the developments of the smart city and the advent of energy saving LEDs. With urban and transport development, street lighting is a growth sector. This has implications for the pole markets in renewal of old poles and substitution with new materials such as composites.
Towers and Poles Report Ed 7 2019
Chapter Summaries

Chapter 18 – PARKING
Parking light poles are a small segment of the street lighting stock. Parking is receiving attention from planners as cities expand and urban space becomes more crowded.

Chapter 19 – PASSIVE SAFETY
Passive safety has made strides in the last ten years and is now the subject of regulation in many advanced countries and attracting attention in some developing countries. It is an important driver for street lighting and for electricity and telephone poles built along roads.

Chapter 20 – THE SMART CITY AND SMART UTILITY AND STREET LIGHTING
The smart city concept is fast becoming a reality, with many now functioning around the world. City authorities are tapping into the opportunities created by better technology to make municipal services and operations faster, simpler, and more cost-efficient. The creation of a smart city involves the integration of many services, among them energy delivery including electricity and gas, water supply and lighting.

Chapter 21 - POLE MATERIALS AND SERVICE LIFE
The various materials used for poles – wood, steel, concrete and composite are discussed.

Chapter 22 - COMPOSITE POLES
Composites are analysed in a detailed section discussing this technology, applications, advantages and disadvantages, market status and manufacturers. Factors such as safety, pricing, the production processes of filament winding and pultrusion are outlined. The launch market in the United States is reviewed, with the increasing use of composite cross arms on wooden or concrete poles, and the beginning of a move from niche market status to wider take-up. Composites are gaining acceptance in the desert climates of the Middle East. After being spearheaded in Scandinavia, composites are being trialed in other European countries.

Chapter 23 – MANUFACTURERS OF COMPOSITE POLES AND HARDWARE
32 companies listed, with profiles of the majors.

Chapter 24 - TYPES OF POLES
The different types of pole are described, with their functions, characteristics and service lives.

Chapter 25 – POLE SPAN
The span between poles is a function of the weight of lines they bear and the density of population beneath them. The design of a network involves a trade-off between longer poles which are more expensive but need fewer accessories, or shorter poles which are cheaper but need more cross-arms and other equipment.

Chapter 26 - SPACE ALLOCATION ON JOINT USE UTILITY POLES
Utility poles are used by more than one line or service in many cases. Conventions exist for the allocation of space on the pole; for transmission lines, sub-transmission lines, distribution lines and telephone lines.

Chapter 27 - MANUFACTURERS OF WOOD, STEEL, ALUMINIUM AND CONCRETE POLES

39 companies listed, with profiles of the majors.

Chapter 28 – CIRCUITS, PHASES AND CONDUCTORS

The basics of circuits and phases are outlined. These have a vital effect on the design and mechanics for towers and poles as well as overhead lines.

Chapter 29 - RIGHTS OF WAY

ROW – Rights of Way are increasingly scarce and expensive. They are discussed with various alternative schemes outlined.

Chapter 30 – DANGER to AND FROM BIRDS

The danger from birds nesting on or colliding with lines and towers can cause not only harm to the birds but outages to the network. The extent of the problem is analysed, with mitigation and prevention methods outlined.
Table of Contents

EXECUTIVE SUMMARY ... 16

Part 1 ... 30

ELECTRICITY TRANSMISSION TOWERS AND MONOPOLES .. 30

1. INSTALLED BASE OF ELECTRICITY TRANSMISSION TOWERS & MONOPOLES .. 31
 Global installed base of towers and monopoles .. 31
 North America .. 33
 Europe ... 34
 CIS .. 36
 Middle East ... 37
 North Africa ... 38
 Sub-Saharan Africa .. 39
 Asia ... 41
 Pacific ... 43
 LAC .. 44
 South America .. 44
 Central America and Caribbean ... 45

2. ELECTRICITY TRANSMISSION TOWERS MARKET .. 47
 Global demand for towers .. 47
 North America ... 48
 Europe ... 49
 CIS .. 50
 Middle East .. 51
 Africa .. 52
 Asia Pacific ... 54
 LAC .. 56

3. LONG TERM DEMAND CYCLES FOR ELECTRICITY TOWERS AND MONOPOLES ... 58
 Growth of transmission line networks ... 58

4. MONOPOLES vs. LATTICE TOWERS .. 62
 United States .. 62
 Europe ... 63
 Netherlands ... 65
 Scandinavia .. 66
 Denmark .. 66
 Iceland .. 67
 Finland .. 67
 France ... 67
 Germany ... 68
 Switzerland .. 68
 United Kingdom .. 68
 Italy ... 69
 France ... 70
 Street lights ... 253
 Data collection ... 253
 Validation ... 253
Towers and Poles Report Ed 7 2019
Table of Contents

Asia Pacific ...70
China ..70
Japan and Korea ..70
India ...70
ASEAN ...71
Mongolia ...71
Pacific ..71
Australia and New Zealand ...71
Latin America ..71
South Africa ..71
Middle East ..73
Cost ..73
Space requirements ...74
Reduction of the electromagnetic field74
Foundations ..76

5.TYPES OF TOWER OR PYLONS ..77
 Suspension tower ...77
 Tension towers ..78
 Angle suspension tower ...78
 Termination or dead end towers, also called tension towers 78
 Transposition towers ...78
 Tower Installation ..78
 1.Build-up or piecemeal method78
 2.Section method ...78
 3.Ground assembly method ..79
 4.Helicopter method ..79

6.ELEMENTS OF LATTICE TOWER DESIGN80

7.SERVICE LIFE AND MAINTENANCE OF STEEL LATTICE TOWERS AND MONOPOLES83
 Service Life ..83
 Maintenance ..83
 Phase 1 – Coffee Stain Rust ...84
 Phase 2 – Abrasive Rust ..84
 Phase 3 – Extensive Abrasive Rust85
 Phase 4 – Crash ..85

8.COMPETITIONS FOR TOWER DESIGN87

9.MANUFACTURERS OF LATTICE TOWERS AND MONOPOLES90
 Chinese manufacturers ..91
 Indian manufacturers ..92
 Other Asin manufacturers ..94
 Middle East ...94
 North and South American manufacturers94
 Other regions ..96
Towers and Poles Report Ed 7 2019
Table of Contents

Part 2 .. 97

10. UTILITY POLES INSTALLED BASE BY COUNTRY AND UTILITY ... 98
 Voltage levels of electricity sub-transmission and distribution poles ... 106
11. INSTALLED BASE OF POLES BY COUNTRY AND MATERIAL .. 107
12. GROWTH OF THE POLE POPULATION .. 114
13. DEMAND FOR POLES IN UNITS .. 123
 Demand in numbers of poles ... 123
 Demand for poles 2017 to 2025 ... 126
14. DEMAND FOR POLES BY VALUE ... 135
15. THE VALUE CHAIN – THE MARGIN STACK .. 144
 The value chain at 6 levels ... 144
16. NATIONAL MARKETS FOR ELECTRICITY AND TELEPHONE DISTRIBUTION POLES 146
 United States ... 146
 The history of utility poles ... 146
 Other materials for utility poles ... 147
 Europe ... 148
 Austria ... 149
 Cyprus .. 149
 Czech Republic ... 149
 Finland .. 149
 France ... 149
 Germany .. 150
 Greece ... 150
 Ireland ... 150
 Netherlands ... 150
 Norway .. 150
 Spain ... 150
 Sweden .. 150
 Switzerland ... 151
 United Kingdom: ... 151
 Russia .. 151
 Asia Pacific ... 152
 Japan .. 152
 China ... 153
 India ... 153
 Korea ... 153
 Singapore and Macau .. 153
 Australia .. 153
Middle East ... 154
Saudi Arabia ... 154
UAE ... 154
Oman ... 154
Africa ... 154
17. STREET LIGHTING .. 156
 The world stock of street lights .. 157
18. PARKING ... 159
 United States .. 159
 Europe .. 160
 China .. 160
 Japan ... 162
 Global parking revenues ... 164
 Lighting poles in the parking sector 164
19. PASSIVE SAFETY .. 167
 Passive safety pole types .. 169
 Safe materials ... 169
 Frangible pole types .. 169
 Breakaway and slip-base poles 169
 Impact-absorbing poles ... 169
 High energy absorbing (HE): .. 170
 Low Energy absorbing (LE) .. 171
 Non Energy absorbing (NE) .. 171
 The origins of the passive safety concept 172
 Passive Safety in the EU .. 172
 EU National regulations .. 173
 Norway ... 173
 Finland ... 173
 Sweden ... 174
 Belgium ... 174
 Netherlands ... 175
 United Kingdom .. 175
 Slovenia .. 175
 United States .. 175
20. THE SMART CITY AND SMART UTILITY & STREET LIGHTING
 The smart city concept .. 177
 Smart street lighting .. 177
 Light Emitting Diodes - LEDs 178
 Central management system (CMS) 178
 The street lighting market ... 179
 Regional development of smart cities and public lighting 179
 Smart street lighting manufacturers 183
Table of Contents

21. POLE MATERIALS AND SERVICE LIFE

- Materials .. 184
- Use .. 184
- Description ... 185
- Size classification .. 185
- H5 - H1 ... 185
- 1-5 .. 186
- 6-10 .. 186
- Materials .. 186
- Wood .. 186
- Wood preservatives .. 188
- Pollution from wood preservatives - Leaching .. 189
- Steel ... 189
- Concrete .. 190
- Spun and cast concrete poles .. 190
- Composites- fibreglass .. 192
- Disposal .. 193
- Wood poles service life ... 194
- Maintenance .. 195
- Ground line Treatment ... 196
- Internal Treatment ... 197
- Concrete poles service life ... 197
- Steel poles service life .. 197
- Composite poles service life ... 197

22. COMPOSITE POLES

- Introduction .. 198
- Development of composite technology and poles in the US .. 198
- Price/cost .. 198
- Safety factor .. 199
- Materials for composites and the manufacturing processes .. 199
- Filament winding ... 200
- Pultrusion ... 200
- Testing composites ... 200
- Scandinavian trials of composites ... 201
- Advantages of composite poles .. 203
- Composite and fibreglass maintenance .. 204
- Service life of composites and other materials .. 205
- Hardware modifications ... 205
- Modular Poles .. 205

23. MANUFACTURERS OF COMPOSITE POLES AND HARDWARE

- United States .. 207
- Cross arms .. 209
Towers and Poles Report Ed 7 2019
Table of Contents

Europe..210
Middle East ...211
India ...212
China ..212
24.TYPES OF POLES ...214
 Other equipment ...216
 Grounding rod ..216
 Dead-end (anchor or termination) poles ...216
 Physical access ...216
 Construction Classifications ..217
25.POLE SPAN ...218
26.SPACE ALLOCATION ON JOINT USE UTILITY POLES ...220
 Supply Space ...220
 Safety Zone Space ..222
 Communications Space ..222
27.MANUFACTURERS OF WOOD, STEEL, ALUMINIUM AND CONCRETE POLES224
 North American manufacturers ..224
 European manufacturers ..225
 Netherlands ..226
 Sweden..226
 Italy ...226
 United Kingdom ..226
 Middle East ...226
 South America ...227
 Brazil ..227
 African manufacturers ...227
 Kenya ...228
 Asia Pacific ..229
 China ...229
 India ...229
 Indian manufacturers ...229
 Malaysia ...229
 Australia ...229
28.CIRCUIT PHASES AND CONDUCTORS ...232
 Single circuit ...232
 Double circuit ..233
 Multiple conductors ..233
 Restrictions on multiple use of corridors ..236
29.RIGHTS OF WAY ...237
 Multiple use of ROWs ...242
30.DANGER TO AND FROM BIRDS

- Extent of the problem ... 243
- The mechanics of an electrocution ... 246
- Mitigation and prevention of collisions 248
- Mitigation and prevention of electrocution 248

METHODOLOGY .. 250

- The installed base and demand ... 250
- The model of the demand cycle .. 250
- Creation of the databases of towers and poles 251
- Short term demand forecast... 253

Figures

Figure 1: Global installed electricity transmission towers, 2017-2025 ... 31
Figure 2: Global installed electricity transmission towers by regions, 2018 .. 32
Figure 3: Regional growth in electricity transmission towers, 2017-2025 .. 32
Figure 4: Installed electricity transmission towers, North America, 2017-2025 ... 33
Figure 5: Installed electricity transmission towers, Europe, 2017-25 ... 34
Figure 6: Installed electricity transmission towers, CIS, 2017-25 ... 36
Figure 7: Installed electricity transmission towers, Middle East, 2017-25 ... 37
Figure 8: Installed electricity transmission towers, North Africa, 2017-25 .. 38
Figure 9: Installed electricity transmission towers, Sub-Saharan Africa, 2017-25 .. 39
Figure 10: Installed electricity transmission towers, China and India, 2017-25 .. 41
Figure 11: Installed electricity transmission towers, Rest of Asia, 2017-25 .. 41
Figure 12: Installed electricity transmission towers, Pacific, 2017-25 ... 43
Figure 13: Installed electricity transmission towers, South America, 2017-25 ... 44
Figure 14: Installed electricity transmission towers, Central America, 2017-25 ... 45
Figure 15: World sales of electricity transmission towers, nominal $, 2018-2025 ... 47
Figure 16: Sales of electricity transmission towers by regions, nominal $, 2018 ... 47
Figure 17: The global networks of transmission lines, length in route km 1900 to 2050 ... 58
Figure 18: The evolution of transmission line voltage, the first introductions ... 59
Figure 19: The long-term demand cycles for towers, 1900 to 2050 ... 60
Figure 20: Annual new and replacement installations of towers, 1900 to 2050 .. 61
Figure 21: The market for lattice towers and poles in the USA, $, 2017 ... 63
Figure 22: European countries installing new EHV monopoles ... 64
Figure 23: Some new designs being installed in Europe ... 64
Figure 24: New 400 kV monopole designs in the Netherlands ... 65
Figure 25: New EHV poles in Scandinavia ... 66
Figure 26: New 400 kV transmission monopoles in Denmark ... 66
Figure 27: Mobile lift maintenance ... 67
Towers and Poles Report Ed 7 2019

Table of Contents

Figure 28: Iceland new 220 kV transmission towers ... 67
Figure 29: New 400 kV and 275 kV transmission monopoles in the United Kingdom 68
Figure 30: A camouflaged 400 kV transmission monopole in the United Kingdom 69
Figure 31: Terna and 380 kV monopoles .. 69
Figure 32: New 380 kV monopole in Dubai ... 73
Figure 33: Comparison of the footprint of a monopole versus a lattice tower 74
Figure 34: Reduction of electromagnetic fields and space requirements 75
Figure 35: Economy of foundations ... 76
Figure 36: Suspension tower, single steel pole ... 77
Figure 37: Lattice steel suspension tower (L6 used in the United Kingdom) 77
Figure 38: Installation of transmission tower by helicopter ... 79
Figure 39: Peak and Cage of a Transmission Tower ... 81
Figure 40: Cross Arm and Body of a Transmission Tower .. 81
Figure 41: 220-kv single-circuit LST ... 82
Figure 42: 500-kV single-circuit LST ... 82
Figure 43: 220-kV double-circuit LST .. 82
Figure 44: 500-kV double-circuit LST .. 82
Figure 45: The principle of exponential corrosion ... 83
Figure 46: Phase 1 – Coffee Stain Rust ... 84
Figure 47: Phase 2 – Abrasive Rust .. 84
Figure 48: Phase 3 – Abrasive Rust .. 85
Figure 49: Phase 3 – The tower falls .. 85
Figure 50: Dietmar Koering of Arphenotype, competition for Icelandic Electrical Transco/1 87
Figure 51: Dietmar Koering of Arphenotype, competition for Icelandic Electrical Transco/2 87
Figure 52: Dietmar Koering of Arphenotype, competition for Icelandic Electrical Transco/3 88
Figure 53: Y Pylon by Knight Architects competition for National Grid 2012 88
Figure 54: Plexus by Arup for National Grid 2012 ... 89
Figure 55: The Land of Giants, Iceland, Choi & Shine ... 89
Figure 56: Major countries stock of electricity poles, telephone poles, street and parking lights, 2018 ... 99
Figure 58: Demand for poles; electricity MV/LV poles, telephone poles, street and parking lights, 1900 to 2015, forecast to 2050 ... 122
Figure 59: Additions and replacements for poles; electricity MV/LV poles, telephone poles, street and parking lights, 1900 to 2017, forecast to 2050 ... 123
Figure 60: New additions and replacements of poles with a 35 year service life, 1900 to 2040..... 124
Figure 61: Early poles in the United States ... 145
Figure 62: The Detroit railroad concrete catenary structure ... 147
Figure 63: Early use of granite telephone poles in Switzerland ... 150
Towers and Poles Report Ed 7 2019

Table of Contents

- Figure 64: Utility pole in Japan ... 151
- Figure 65: A Stobie pole in Australia ... 153
- Figure 66: Road length and street lights ... 155
- Figure 67: Stock of street lights in the world 2018 to 2025 157
- Figure 68: Comparison of the numbers of motor vehicles and available parking spaces in three of China's largest cities .. 160
- Figure 69: Classification of parking as aces in Japan 161
- Figure 70: A mechanical parking structure ... 162
- Figure 71: 60 mph crash test with 114 mm post 166
- Figure 72: Slip-base poles .. 168
- Figure 73: Impact absorbing pole ... 169
- Figure 74: HE, LE and NE passive safety poles performance in a collision .. 170
- Figure 75: Percentage share of road deaths per road type (2007-2009 average) ranked by the percentage share of road deaths on a rural roads and motorways taken together 171
- Figure 76: Examples of LED street lighting adoption 178
- Figure 77: The top 20 smart cities in performance ranking in 2017 179
- Figure 78: The top 20 smart cities in consolidated performance ranking in 2017 .. 180
- Figure 79: Smart street lighting manufacturers ... 182
- Figure 80: Wood joint use pole in the USA ... 186
- Figure 81: Decorative Wood light pole in the USA 187
- Figure 82: Decorative Wood light pole by Tehomet in Europe, a Valmont subsidiary ... 187
- Figure 83: Union Metal steel pole installation, 1927 and 2018 189
- Figure 84: A Stobie pole in Australia, electricity and street light 191
- Figure 85: Outline of potential decay patterns .. 194
- Figure 86: Decay in a wood utility pole .. 195
- Figure 87: A nest of poles for shipment ... 205
- Figure 88: Double-circuit, 138-kV line on wood structures 213
- Figure 89: Double-circuit, 138-kV line on galvanized steel poles 213
- Figure 90: Single-circuit 138-kV line on weathering steel 214
- Figure 91: H-frame wood structure ... 214
- Figure 92: Lines in Bolivia (left) have considerably longer span than lines in Laos (right) ... 218
- Figure 93: Space allocations on a joint utility pole 219
- Figure 94: Supply space on a utility pole .. 220
- Figure 95: Safety Zone Space on a utility pole 221
- Figure 96: The Communications Space in a utility pole 222
- Figure 97: Tower for single circuit, three phase system (three conductors) ... 231
- Figure 98: Tower for double circuit, three phase system (six conductors) ... 232
- Figure 99: Tower for multiple circuits, three phase system (twelve conductors) ... 233
Towers and Poles Report Ed 7 2019
Table of Contents

Figure 100: Multiple lines, lattice towers and monopoles in same corridor .. 234
Figure 101: A distribution line right of way .. 236
Figure 102: A wetland-scrub/shrub-dominated community the first year after a mow. 236
Figure 103: A grass-dominated community in an agricultural matrix the first year after a mow. 237
Figure 104: An example of a single ROW corridor. .. 237
Figure 105: An example of parallel transmission ROW corridor .. 238
Figure 106: Typical European right of way cross section, self-supporting tower 239
Figure 107: Typical European right of way cross section, guyed tower ... 240
Figure 108: Right-of-way comparison for equivalent capacity of 765-kV and 345-kV lines 240
Figure 109: Blue crane electrocuted in South Africa .. 242
Figure 110: White storks in their nest on a utility pole in Vladeni in Romania 243
Figure 111: An example of a pole-mounted transformer ... 246
Figure 112: Distribution pole with symmetric chevron (arrow) on top as bird exclusion device 248
Figure 113: Dedicated nesting pole next to distribution pole with bird exclusion device 248
Figure 114: Additions and replacements from 1945 to 1950 .. 249
Figure 115: Additions and replacements from 1900 to 1950 .. 251
Figure 116: Comparison of the installed base and annual demand for towers, 1900 to 2050 251

Tables

Table 1: Global installed electricity transmission towers, by region, 2017-2025 .. 33
Table 2: Installed electricity transmission towers, North America, 2017-25 ... 33
Table 3: Installed electricity transmission towers, Europe, 2017-2025 ... 35
Table 4: Installed electricity transmission towers, CIS, 2017-25 .. 36
Table 5: Installed electricity transmission towers, Middle East, 2017-25 ... 37
Table 6: Installed electricity transmission towers, North Africa, 2017-25 .. 38
Table 7: Installed electricity transmission towers, Sub-Saharan Africa, 2017-22 40
Table 8: Installed electricity transmission towers, Asia, 2017-22 .. 42
Table 9: Installed electricity transmission towers, Pacific, 2017-25 .. 43
Table 10: Installed electricity transmission towers, South America, 2017-25 44
Table 11: Installed electricity transmission towers, Central America, 2017-25 46
Table 12: Sales of electricity transmission towers by regions, nominal $, 2018 48
Table 13: Sales of electricity transmission towers, North America, nominal $, 2018-2025 48
Table 14: Sales of electricity transmission towers, Europe, nominal $, 2018-2025 49
Table 15: Sales of electricity transmission towers, CIS, nominal $, 2018-2025 50
Table 16: Sales of electricity transmission towers, Middle East, nominal $, 2018-2025 51
Table 17: Sales of electricity transmission towers, North Africa, nominal $, 2018-2025 52
Table 18: Sales of electricity transmission towers, Sub-Saharan Africa, nominal $, 2018-2025 52
Table 19: Sales of electricity transmission towers, Asia, nominal $, 2018-2025............................... 54
Table 20: Sales of electricity transmission towers, Pacific, nominal $, 2018-2025........................... 55
Table 21: Sales of electricity transmission towers, South America, nominal $, 2018-2025 56
Table 22: Sales of electricity transmission towers, Central America, nominal $, 2018-2025 57
Table 23: Description and cost of repairs .. 86
Table 24: Manufacturers of steel towers and poles, by share of production capacity 90
Table 25: Numbers of electricity poles, telephone poles, street and parking lights, 2018 99
Table 26: Electricity, telephone poles, street and parking lights in North America, 2018 99
Table 27: Electricity, telephone poles, street and parking lights in Europe, 2018 100
Table 28: Electricity, telephone poles, street and parking lights in CIS, 2018 101
Table 29: Electricity, telephone poles, street and parking lights in the Middle East, 2018 101
Table 30: Electricity, telephone poles, street and parking lights in North Africa, 2018 101
Table 31: Electricity, telephone poles, street and parking lights in Sub-Saharan Africa, 2018 102
Table 32: Electricity, telephone poles, street and parking lights in Asia, 2018 103
Table 33: Electricity, telephone poles, street and parking lights in Pacific, 2018 104
Table 34: Electricity, telephone poles, street and parking lights in South America, 2018 105
Table 35: Electricity, telephone poles, street and parking lights in Central America, 2018 105
Table 36: Numbers of electricity poles, telephone poles, street and parking lights
by material, 2018 .. 107
Table 37: Electricity, telephone poles, street and parking lights in North America
by material, 2018 .. 107
Table 38: Electricity, telephone poles, street and parking lights in Europe by material, 2018 108
Table 39: Electricity, telephone poles, street and parking lights in CIS by material, 2018 109
Table 40: Electricity, telephone poles, street and parking lights in the Middle East
by material, 2018 .. 109
Table 41: Electricity, telephone poles and street lights in North Africa by material, 2018 109
Table 42: Electricity, telephone poles, street and parking lights S-Saharan Africa
by material, 2018 .. 110
Table 43: Electricity, telephone poles, street and parking lights in Asia by material, 2018 111
Table 44: Electricity, telephone poles, street and parking lights in the Pacific by material, 2018.... 112
Table 45: Electricity, telephone poles, street and parking lights in South America
by material, 2018 .. 113
Table 46: Electricity, telephone poles, street & parking lights in Central America
by material, 2018 .. 113
Table 47: Installed base of electricity poles, telephone poles, street and parking lights, 2017-25 . 114
Table 48: Installed base of electricity, telephone poles, street and parking lights
in North America, 2017 - 2025 .. 114
Table 49: Installed base of electricity, telephone poles, street and parking lights in Europe, 2017 – 2025 ... 114
Table 50: Installed base of electricity, telephone poles, street and parking lights in CIS, 2017 – 2025 ... 115
Table 51: Installed base of electricity, telephone poles, street and parking lights in the Middle East, 2017 – 2025 ... 116
Table 52: Installed base of electricity, telephone poles, street and parking lights in North Africa, 2017 – 2025 ... 116
Table 53: Installed base of electricity, telephone poles, street and parking lights, in Sub-Saharan Africa, 2017 – 2025 ... 117
Table 54: Installed base of electricity, telephone poles, street and parking lights in Asia, 2017 – 2025 ... 118
Table 55: Installed base of electricity, telephone poles, street and parking lights in the Pacific, 2017 – 2025 ... 119
Table 56: Installed base of electricity, telephone poles, street and parking lights, in South America, 2017 – 2025 ... 120
Table 57: Installed base of electricity, telephone poles, street and parking lights, in Central America, 2017 – 2025 ... 121
Table 58: New additions and replacements of poles with a 35 year service life, 1900 to 2040 124
Table 59: Demand for electricity MV/LV poles, telephone poles, street and parking lights by region, 2017-2025 ... 125
Table 60: Demand for electricity MV/LV poles, telephone poles, street and parking lights by country, North America, 2017-2022 ... 125
Table 61: Demand for electricity MV/LV poles, telephone poles, street and parking lights by country, Europe, 2017-2025 ... 126
Table 62: Demand for electricity MV/LV poles, telephone poles, street and parking lights by country, CIS, 2017-2025 ... 127
Table 63: Demand for electricity MV/LV poles, telephone poles, street and parking lights by country, Middle East, 2017-2025 ... 127
Table 64: Demand for electricity MV/LV poles, telephone poles, street and parking lights by country, North Africa, 2017-2025 ... 128
Table 65: Demand for electricity MV/LV poles, telephone poles, street and parking lights by country, Sub-Saharan Africa, 2017-2025 ... 129
Table 66: Demand for poles electricity MV/LV poles, telephone poles, street and parking lights by country, Asia, 2017-2025 ... 130
Table 67: Demand for electricity MV/LV poles, telephone poles, street and parking lights by country, Pacific, 2017-2025 ... 131
Table 68: Demand for electricity MV/LV poles, telephone poles, street and parking lights by country, South America, 2017-2025 ... 132
PART 1 - TRANSMISSION TOWERS & MONOPOLES

Global installed base of towers and monopoles

There are an estimated XXX million high voltage electricity transmission towers and monopoles installed in the world in 2018, growing at a cagr of XXX% to XXX million in 2025. High voltage transmission towers and poles are defined in general as those supporting lines ≥ 100 kV but include some sub-transmission and inter-regional HV distribution lines and some below 100 kV. There are XXX million telecoms towers which are not included in this total and are covered in the StatPlan Telecom Network Report.

Figure 1: Global installed electricity transmission towers, 2017-2025

The largest base of towers is in Asia Pacific with XXX million in 2018, dominated by China with XXX million, India with XXX million and Japan with almost XXX million. North America has XXX million towers and Europe XXX million. Next comes Russia with XXX million and Brazil with XXX million. Note that the Russian figure includes inter-regional 110 kV distribution towers. The fastest growing region will be Sub-Saharan Africa, which will grow at XXX% and next the Middle East at XXX%. China will grow with a cagr of XXX% and India at XXX%, Europe XXX% and North America at XXX%.

18
Europe

Europe is a mature market place but is currently on a rising demand trend, as the consequence of a peak in new build in the 1960s and a lack of investment in the previous two decades, together with new build to accommodate grid capacity for renewables.

Table 1: Sales of electricity transmission towers, Europe, nominal $, 2018-2025

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia & H’govina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macedonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MONOPOLES vs. LATTICE TOWERS

There is a clear trend towards the increased use of monopoles for higher voltage transmission but this trend is variable around the world. These will not totally replace lattice towers but where they are chosen they will be installed in new lines and as replacements when lattice towers are due for renewal. A large share of the market for lattice towers will continue..

Netherlands

In the Netherlands, the transmission operator, Tennet, has started to install monopoles instead of lattice towers. The project was initiated in 2007 and new pylons have been designed by engineers at Tennet, in collaboration with KEMA, the Dutch research company and unusually, in conjunction with appointed architects. Instead of a single lattice tower, the cables are supported by two steel poles up to 65 metres high.

The electromagnetic footprint has been a powerful driver of change in the Netherlands. Based on epidemiological studies of people living near power lines in Sweden and the US, Dutch authorities advise avoiding long-term exposure of children to magnetic fields higher than 0.4 microTesla. To meet such stringent requirements, power line corridors for traditional HV transmission projects would normally have to be some 300 metres wide, meaning major obstacles given the dense infrastructure and public perception of overhead lines and the small area of the Netherlands.

Figure 2: New 400 kV monopole designs in the Netherlands

Source: Tennet
PART 2- ELECTRICITY, TELEPHONE & STREET LIGHTING POLES

In the 4th edition of the Towers and Poles Report we expanded coverage in the Poles Sections to include street lighting, although utility poles owned by electricity distribution utilities and telephone utilities constitute the bulk of the pole population. The report now covers electricity poles, telephone poles (for landline telephone, not telecoms towers) and street lighting poles, with a new section for poles used for parking lighting. The drive to replace sodium, fluorescent and other traditional light sources with LEDs has sparked a great deal of interest and research into street lighting, with more statistics of the installed base of street lights becoming available. These form a significant share of the fleet of poles and one where there may be considerable replacement with installation of LEDs. Composites have also been used for street lights more frequently than for electricity distribution or telephone poles, especially with decorative poles in urban areas.

The drivers for each of these sectors are different and in one respect street lighting is the odd one out...........

In 2018, the total installed base of poles was XXX billion, of which nearly XXX million were electricity, XXX million were telephone with an unknown number of electricity and telephone being multi-utility, and XXX million were street lights.

Table 2: Numbers of electricity poles, telephone poles and streetlights, 2018

<table>
<thead>
<tr>
<th>Million</th>
<th>Electricity</th>
<th>Telephone</th>
<th>Street Lights</th>
<th>Total poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle East</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three countries have almost half the poles in the world; China with XXX%, the United States with XXX% and India with XXX%. The top twelve countries have just under two third, 63%.
Table 3: Demand for electricity MV/LV poles, telephone poles, street lights by country, CIS, 2017-2025

<table>
<thead>
<tr>
<th>'000 poles</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armenia</td>
<td></td>
</tr>
<tr>
<td>Azerbaijan</td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
</tr>
<tr>
<td>Kazakhstan</td>
<td></td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td></td>
</tr>
<tr>
<td>Moldova</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td></td>
</tr>
<tr>
<td>Tajikistan</td>
<td></td>
</tr>
<tr>
<td>Turkmenistan</td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td>Uzbekistan</td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Demand for electricity MV/LV poles, telephone poles, street lights by country, Middle East, 2017-2025

<table>
<thead>
<tr>
<th>'000 poles</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahrain</td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td></td>
</tr>
<tr>
<td>Iraq</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td></td>
</tr>
<tr>
<td>Jordan</td>
<td></td>
</tr>
<tr>
<td>Kuwait</td>
<td></td>
</tr>
<tr>
<td>Lebanon</td>
<td></td>
</tr>
<tr>
<td>Oman</td>
<td></td>
</tr>
<tr>
<td>Palestine</td>
<td></td>
</tr>
<tr>
<td>Qatar</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td></td>
</tr>
<tr>
<td>Syria</td>
<td></td>
</tr>
<tr>
<td>UAE</td>
<td></td>
</tr>
<tr>
<td>Yemen</td>
<td></td>
</tr>
<tr>
<td>Middle East</td>
<td></td>
</tr>
</tbody>
</table>
NATIONAL MARKETS FOR ELECTRICITY AND TELEPHONE DISTRIBUTION POLES

United States
The United States is one of the largest single markets for utility poles with an installed base estimated at XXX million. XX% are owned by electrical utilities, XX% by telecoms companies and XX% by railways.........................

Europe
Around 2,400 electricity distribution companies distribute electricity to customers in the EU. Eurelectric, the association for the European electrical industries is a strong proponent of wooden utility poles. The use of wooden poles in distribution networks has kept its position within electricity networks. These have come under fire in recent years for environmental reasons because of preservatives, creosote in particular. The European impregnation industry has for over 60 years been producing creosote poles according to industry guidelines and national standards, the WEI specifications but wood preservatives..............

.........................

France
In France electricity distribution poles are mainly wood or concrete. Out of XXX wooden poles installed each year, XX% are treated with creosote (source: ERDF). Other DSOs still using wooden poles (in particular in rural areas). A number of local authorities require the use of wooden poles. France Telecom owns XXX million wood telecoms poles.

Various experiments for constructing reinforced concrete poles were made in Europe, and the first known experiment was made in 1896 by a French engineer

Germany
XX% of electricity poles installed, of which over are wooden, XX% concrete and XX% steel. There are reported to be XXXmillion wooden utility poles in service. Wooden poles, concrete poles, tubular steel poles and steel lattice towers are used for medium-voltage overhead power systems. Concrete pylons are used in Germany normally only for lines with operating voltages below 30kV. In exceptional cases concrete pylons are used also for 110 kV lines, as well as for the public grid or for the railway traction current grid.

Greece
About XX million wooden poles installed in the Greek electricity distribution networks. About XX% of overhead distribution networks’ poles are creosote impregnated wooden poles. Every year, about XXX
new wooden poles are installed in the distribution networks, in new lines or for replacement of damaged poles.

.................

Japan

There are some XXX million utility poles in Japan, XX million owned by the EPCOs, the electrical utilities and XX million by NTT the telecoms utility. In Japan, the wood pole market has been shrinking because concrete poles now dominate the utility pole market. Japanese wood poles are limited to use for broadcasting wires in the countryside and as supporting poles for trees. A service life of 15 years is quoted in Japan for wood utility poles. A feature of Japan, and one which surprises many visitors to such an advanced country is the plethora of overhead lines in cities. Unlike most developed cities around the world, where various kinds of cables are kept underground, most Japanese cities have them above ground. The reason for this is that after World War II Japan wanted to bring electricity as quickly as possible to as many people as possible and it was easier and much less expensive and obstructive to do this by putting up utility poles.

.................

THE VALUE CHAIN – THE MARGIN STACK

The cost of any product such as towers and poles, can be measured at a number of stages in the value chain, at the start when it is no more than a piece of unworked ore, to its final installation in working order and finally as a constituent of capital expenditure. At each level in the value chain, value is added and profit margin is ‘stacked’. The ‘cost of doing business’ (CODB) refers to all the expenses incurred by a firm or a sole proprietor in producing and selling goods or services. The ‘margin stack’ is the total amount of profit charged by the suppliers of materials, transport, sales and any other processes which are part of the final CODB plus the final profit margin. The point of interest in the chain depends on the business of the person who is assessing the value. The value chain starts with the input of raw materials. These inputs, in this case steel, typically constitute from 50-80% of the manufacturing cost of a finished product.

The value chain at 6 levels

1. **BOM, bill of materials** - Metal producers and refiners are concerned about the prices they can get for their output in its basic form, ingots, rods, plates etc. For the equipment manufacturers this price translates into the BOM (bill of materials) as a cost of production. CODB + margin.

2. **Manufactured CODB** - Adding the cost of fabricating the materials into finished products produces the manufactured cost.

3. **Factory gate price (MSP)** - The addition of non-manufacturing costs such as sales and finance costs brings it up to the factory gate price or manufacturer’s selling price. This does not include any transport cost. (Note: factory gate price is sometimes quoted with manufacturer’s profit margin and sometimes not.) CODB + margin.