EXECUTIVE SUMMARY

Chapter 1 - THE POWER AND DISTRIBUTION TRANSFORMER MARKET

Total demand for power and distribution transformers in 2018 is summarised with cagr in real and nominal values, in MVA capacity, and in real and nominal price per unit, for 2019 and forecast to 2026. For all transformers, GSU transformers, power transformers, distribution transformers.

Chapter 2 - THE GROWTH OF THE WORLD’S TRANSFORMER FLEET

A comparison of data of the growth of the transformer stock as measured in the last seven StatPlan Transformer Surveys- analysis EHV HV GSU/utility PTs/industry DTs/DG GSU/utility DTs/industry DTs.

Chapter 3 - THE IMPACT OF COVID

The progress of Covid and its impact on the transformer industry and markets.

Chapter 4 - TRANSFORMER MARKET, GSU, POWER AND DISTRIBUTION, INDUSTRIAL

The classifications of transformers - GSU, LPT, MPT power, SPT power, pad mounted DT, pole top DT, industrial.

Chapter 5 - LOW VOLTAGE TRANSFORMERS BACKGROUND INFORMATION

A mix of information about the LV market and the usage of LV transformers. An outline of the European and North America distribution systems with differences in LV mains. Configurations of industrial and commercial transformer systems are described linking with this with Low voltage transformers.

Chapter 6 – NORTH AMERICAN TRANSFORMER MARKET

Analysis of demand and transformer stock by category; GSU, power transformers and distribution transformers. Detailed shipment data for distribution transformers in the US is only available for the years 2009 by transformer type. Market drivers and utility investment are outlined. The manufacturing industry is analysed in detail by transformer category; LPT, power, medium power transformers, liquid and dry type MV transformers, LV dry type. Purchase influences and delivery channels are analysed. Efficiency are outlined.

Chapter 7 - EUROPEAN TRANSFORMER MARKETS

The European market for power and distribution transformers in estimated at ex-factory cost, for generator transformers, transmission power transformers and distribution transformers for every country. Regional overview of the European utility system is provided, with details of utilizes and network structure, including voltage analysis. Efficiency measures are outlined. The changing network landscape of Distributed Power and Smart Transformers are outlined. Over the last five years, the EU power sector has been hit by a “perfect storm” of macroeconomic and industry-specific factors that have led to overcapacity and low prices. MPS and market drivers are analysed. As a result, the region’s large publicly traded utilities
have, on average, lost half of their market capitalisation since 2008, destroying around EUR 500 billion of shareholder value. This is outlined and analysed in detail focusing on the major utilises affected. The chapter contains detailed marketing sections for the major countries in Europe; France, Germany, Italy, Spain, United Kingdom and Turkey, analysis of manufacturing facilities, especially the global leaders - ABB, Siemens, Alstom, Schneider, Legrand.

Chapter 8 - CIS TRANSFORMER MARKET

The CIS market for power and distribution transformers in estimated at ex-factory cost, for generator transformers, transmission power transformers and distribution transformers for every country. The chapter contains a separate report on the major CIS country, Russia.

Chapter 9 - MIDDLE EAST AND AFRICA TRANSFORMER MARKETS

The Middle Eastern and African markets for power and distribution transformers in estimated at ex-factory cost, for generator transformers, transmission power transformers and distribution transformers for every country. Individual sections on Iran, Saudi Arabia and UAE.

Chapter 10 - ASIA PACIFIC TRANSFORMER MARKETS

The Asia Pacific markets for power and distribution transformers in estimated at ex-factory cost, for generator transformers, transmission power transformers and distribution transformers for every country. Separate detailed sections are included for China, India, Japan, Korea, Indonesia, Taiwan and Thailand. An interesting analysis is provided of investment as a % of GDP, which shows clearly the dominance of the Asian countries and MENA with implications for markets.

Chapter 11 - LAC TRANSFORMER MARKETS

The LAC markets for power and distribution transformers in estimated at ex-factory cost, for generator transformers, transmission power transformers and distribution transformers for every country. The two largest market, Brazil and Mexico are analysed individually.

Chapter 12 - RECENT TRENDS IN TRANSFORMER CAPACITY, CENTRAL AND DISTRIBUTED, NEW & REPLACEMENT

Growth of distributed generation.

Chapter 13 - SOLAR PV SOLAR PV AND TRANSFORMERLESS INVERTERS

Inverters, step-up transformers for grid connected solar PV plants, and transformerless TL inverters for grid connected solar PV plants.

Chapter 14 - THE VALUE CHAIN – FROM MATERIALS TO CAPEX

The cost of any product such as transformers or switchgear can be measured in a number of ways, from being a piece of unworked metal, to its final installation in working order and finally as a constituent of
capital expenditure. Different price levels are important in this supply chain. These are defined and analysed with % ratios for each step in the sequence. The value chain differs for different routes to market and is a fundamental issue for channel strategy.

Chapter 15– THE UTILITY LANDSCAPE

Customer list - utility landscape with transmission and distribution companies listed for 204 countries with hundreds of utilities named.

Chapter 16 - UTILITY CUSTOMER ANALYSIS

The world population of electricity distribution utilities summary analysis by country and size of customer base.

Chapter 17 - TRANSFORMERS SALES AT RETAIL PRICE AND INSTALLED COST

Demand by region is summarised at retail price and installed coast.

Chapter 18 - UTILITY, GSU & INDUSTRIAL POWER AND DISTRIBUTION TRANSFORMER INSTALLED CAPACITY, NUMBERS AND AVERAGE DISTRIBUTION TRANSFORMER KVA PER UNIT

A detail set of tables of Generator, Utility and Industrial Power and Distribution transformer capacity (MVA), numbers of units and kVA/unit for distribution transformers, by country and ownership, for 2017.

Chapter 19 - NETWORK TRANSFORMER LAYOUT

In the T&D industry, GSU, power network and distribution network transformers are one of the major components of equipment, in addition to switchgear, cables and other items of equipment. Transformers are needed at all stages in an electrical supply system when the voltage level changes, either up or down and the transport of power goes through several stages between generation and final delivery to the consumer. These stages vary according to the design of the system. The chapter outlines the various stages of the power networks in detail and identifies where the different types of transformers are positioned, flagging regional differences in practice, with regional summaries.

Chapter 20 - A REVIEW OF GENERATION

Categories of generation; central, captive, distributed, hidden.

Chapter 21 - HOSTING CAPACITY OF DISTRIBUTION NETWORKS AND DG PENETRATION

A review of overvoltage caused by superimposition of renewables on existing networks, power quality, power loss, solutions and rule of thumb hosting capacity calculations.

Chapter 22 - DISTRIBUTION TRANSFORMERS BY kVA UNIT CAPACITY

A regional breakdown of kVA distribution transformer capacity in Europe and North America, and counts for selected countries in Europe and in Asia.
Chapter 23 - THE LONG-TERM DEMAND CYCLE 1900-2050

Global installed transformer capacity has risen every year throughout the last and current centuries, from 22 GVA in 1900 to 45,188 GVA in 2016. The growth has been linear and it will continue as such until 2050. At face value the steady rise in installed capacity suggests that annual demand for power and distribution transformers will rise steadily every year on a linear path, but this is not the case. It was such an assumption as this which led to unsustainable surpluses of production capacity in the electro-technical industry in the 1990s and the demise of many hitherto respected and successful companies. Over 200 transformer factories were closed between 1970 and 2000. Figures plot installed transformer capacity and annual demand based on replacement cycles of 40 years for power transformers and 30 years for distribution transformers. The long-term demand cycle of new and renewal does not equate to short term expenditure. At present, if replacement had been carried out as needed demand would be going down. However, replacement has been delayed for years, especially in the transmission sector and short-term market is increasing. The long-term demand cycle is a tool for long-term planning, while the short-term expenditure projections are for immediate sales and marketing purposes.

Chapter 24 - TRANSFORMER:GENERATOR RATIOS - MVA:MW

The ratio of transformer capacity to generating capacity is a useful statistic because generating capacity is comprehensively recorded whereas transformer capacity is less well documented. This enables us not only to confirm snapshots of transformation capacity at any point in time but also to plot long term trends and demand cycles for transformers based on the historical data for generating capacity. Power transformers have along service lives, often 40 years or more, with some still in service aged 60-80 years and even a few 100 years old. It is therefore essential to plot long term installed capacity. There are variations between countries, which are the result of different network designs and voltage classes. The ratios are given for every country at four stages; GSU, power network, distribution network and total generator transformer capacity.

Chapter 25 - SMART TRANSFORMERS

Challenges such as the aging power grid, increasing energy demands, spiraling cost of generating electricity and its cost on the environment all point toward the need for a grid that can produce and distribute energy more efficiently and reliably. The smart grid is being developed to deal with these problems. Transformers serve as a hub for collection and distribution of energy and are a key component of a successful transition to a smart grid. The smart grid concept ties together all aspects of the power system, from the plug in the wall at a house or office to a factory, to the distribution system, to power plants of all kinds. For the smart grid to work efficiently, there will be a need for smart transformers. As part of the distribution network, there are millions of transformers in the world; unfortunately, very few have any intelligence or communication capabilities that meet advanced metering infrastructure (AMI) standards or are parts of an advanced sensor infrastructure (ASI) network.
Chapter 26 - N-1 STANDARD, N-2 AND 2N, REDUNDANCY AND REPLACEMENT

Redundancy is a crucial consideration in infrastructure design and has major implications for market size calculations. The following factors are reviewed; the impact of network failure, transformer failure, industrial reliability, network reliability, N-1 and the networks, contingency planning for network failure and electricity distribution.

Chapter 27 - PRICE TRENDS AND FACTORS DRIVING TRANSFORMER PRICES

In recent years, the prices of electrotechnical products have been volatile due to variations in many factors which affect them. Price trends are reviewed with commentary on PPI - Producer Price Index, industry trends, production capacity, and the manufacturing input cost composition. A review of electrical steel production and capacity is included.

Chapter 28- MEPS - MINIMUM ENERGY PERFORMANCE STANDARDS

Losses in transmission and distribution networks constitute the single biggest loss in any electricity system. Approximately 70% of the losses in electricity networks occur in the distribution network with conductor accounting for 42% of these losses and transformers about 30%. Transformers operate 24 hours/day, 365 days per year and have very long lifetimes, typically 40-50 years for power transformers and around 30 years for distribution transformers. Energy consumption during its service life is the dominant factor in their life-cycle assessment environmental impact. The increased use of electronic equipment can lead to increased harmonic currents and higher losses in transformers. Transformers are already efficient pieces of equipment, with efficiency in the range of 95 to 99. The issue is discussed and details of mandatory efficiency standards around the world supplied. MEPS Aer outlined for each major country.

Chapter 29 - HIGH EFFICIENCY TRANSFORMERS

Development of a new technology – amorphous core transformers. Amorphous core transformers (AMTs) significantly reduce no-load losses by using an amorphous alloy for the iron core, on which the transformer windings that carry the electricity are coiled. The technology and market penetration is outlined by region and major country.

Chapter 30 - TRANSFORMER PRODUCTION CAPACITY

Manufacturers of larger power transformers are easier to identify and their production capacity is either published or can be estimated. Most countries have numbers of small local producers of distribution transformers which are sold to local distribution utilities and are poorly documented. Some large countries have a lot of these companies, notably China, India, Europe and the United States. China, Europe and the United States have large numbers of distribution utilities, India fewer. The chapter surveys the global situation with detailed reports for the major countries.
Chapter 31 - THE SUPPLY CHAIN

Analysis of supply chains at a geopolitical level, with actions by the governments of the United States and Japan to replace the Chinese dominance of the world supply chains. Outline of the global supply chains for power transformers and regional and local supply chains for distribution transformers. Impact of Covid and its effect on the transformer industries and markets (see Chapter 3).

Chapter 32 - GLOBAL MARKET SHARE POWER AND DISTRIBUTION TRANSFORMERS, VALUE, 2017

Global market shares for the major transformer manufacturers.

Chapter 33 - LOGISTICS

Power transformers, especially GSU and quad boosters, are among the largest and heaviest pieces of equipment that must be transported, sometimes over long distances. Because of their size and the small numbers in service there are only a few manufacturers of the largest units in the world, thereby necessitating long and complex logistics. This is increasingly mentioned by vendors as a major cost and a consideration in locating manufacturing sites. It is not our purpose to provide a detailed survey of logistics in this report but to give a flavour of what is an increasingly important issue of the complexities of delivery of large, heavy equipment. The chapter contains some graphic illustrations of logistical problems and mishaps, which demonstrate the difficulties that planners face more effectively than any descriptions.

Chapter 34 - ELECTRIFICATION

The impact of increased electrification on future markets is described with its advantages in terms of electrical goods and aspirations, which vary according to the sophistication of the electrical market in a country. Factors driving the increase in numbers of electrical connections are assessed with tables of electrification levels for every country, from 1950 to 2050.

METHODOLOGY
Transformer Report

Table of Contents

Chapters

EXECUTIVE SUMMARY .. 29
 The power transformer market ... 29
 The impact of Covid ... 30
 United States ... 31
 Europe .. 33
 CIS .. 36
 Middle East .. 37
 Asia Pacific ... 37
 China .. 37
 Japan .. 39
 India ... 40
 Korea ... 41
 LAC .. 41
 Long term demand cycle .. 42
 Transformer: generator capacity ratios - MVA - MW ... 43
 Categories of generation .. 44
 Recent trends in Generation ... 45
 Solar PV and Transformerless inverters ... 45
 Renewables and hosting capacity .. 46
 Distribution Utility Customer Base ... 47
 Channels to market ... 47
 Transformer types .. 47
 Efficiency transformers .. 48
 Smart transformers .. 49
 Manufacturing capacity, global and by region ... 49
 Price trend .. 50
 Redundancy ... 51
 Logistics ... 51
 Electrification ... 52

1. THE POWER AND DISTRIBUTION TRANSFORMER MARKET ... 53
2. THE GROWTH OF THE WORLD’S TRANSFORMER FLEET .. 55
3. THE IMPACT OF COVID .. 57
 The origin of the Covid pandemic in China ... 57
 Global waves of Covid ... 57
 World reactions to the 1st wave in China, 1st and 2nd Quarters 2020 ... 58
 The impact on industrial production in China ... 58
 Mass disruption ... 58
 Electrical equipment manufacturers - transformers .. 59
 China ... 59
 India .. 59
 Industrial growth in India as a % of month in previous year .. 60
 Disruptions & switching .. 60
 Distribution transformers ... 60
 IMPACT ON TRANSFORMER DEMAND ... 61
Table of Contents

1. Transformer market drivers 5
 - The utility market in the United States 5
 - Composition of demand 5
 - Demand for power transformers 5
 - Transformer stock .. 5
 - Regional trend of transformer sales 5

2. Transformer types .. 4
 - Large Power Transformers (LPT) 4
 - Classification according to application 4
 - Generator step-up transformers (GSU) 4
 - System intertie (interconnecting) transformers 4
 - Distribution Transformers 4
 - Pad mounted distribution transformers 4
 - Pole-mounted distribution transformers 4
 - Industrial transformers 4
 - Transformerless TL Inverters 4

3. Low Voltage Transformers Background Information 6
 - AC Voltage levels ... 6
 - Low voltage terminology 6
 - Low voltage differences in Europe and the United States ... 6
 - Utility-side Distribution networks 6
 - North American system 6
 - European system ... 6
 - Six substation and industrial and commercial transformer types commonly used behind the meter in the United States ... 6
 - 3 phase 4 wire connection LV for North American industry and commercial users 7
 - European LV for industrial users 7
 - Commercial buildings 7
 - Examples of LV projects in the United states 7
 - Industry .. 7
 - USA industrial market 7
 - Residential buildings 7
 - Multi-storey buildings and the usage of LV transformers 7
 - Power distribution in small buildings 7
 - Power distribution in large residential or commercial buildings 7
 - Large buildings, the vertical supply system (rising mains) 7
 - Burj Khalifa Dubai ... 7
 - Conclusion .. 7

4. Transformer types - GSU, Power and Distribution, Industrial Transformers 4
 - Power transformers .. 4
 - Large Power Transformers (LPT) 4
 - Classification according to application 4
 - Generator step-up transformers (GSU) 4
 - System intertie (interconnecting) transformers 4
 - Distribution Transformers 4
 - Pad mounted distribution transformers 4
 - Pole-mounted distribution transformers 4
 - Industrial transformers 4
 - Transformerless TL Inverters 4

 - Transformer stock .. 6
 - Demand for power transformers 6
 - Composition of demand 6
 - The utility market in the United States 6
 - Transformer market drivers 6
Transformer Report

Table of Contents

German energy transition and utility reorganisation .. 122
Transformer manufacturers .. 123
ITALY .. 124
Transformer stock ... 124
Market drivers .. 124
Transformer manufacturers ... 124
SPAIN ... 125
Transformer stock ... 125
Market drivers .. 125
Transformer manufacturers ... 125
SWITZERLAND ... 126
Transformer stock ... 126
ABB .. 126
UNITED KINGDOM ... 128
Transformer stock ... 128
Market drivers .. 129
Transformer manufacturers ... 129
TURKEY ... 131
Transformer stock ... 131
Market drivers .. 131
Transformer manufacturers ... 131
8.CIS TRANSFORMER MARKET ... 133
RUSSIA ... 135
Transformer stock ... 135
The Russian power system ... 135
Market drivers .. 136
Russian transformer manufacturers .. 136
Ukrainian transformer manufacturer ... 137
9.MIDDLE EAST AND AFRICA TRANSFORMER MARKETS 138
Oil price fall and Covid 19 ... 145
IRAN ... 147
Transformer stock ... 147
Transformer manufacturers ... 147
SAUDI ARABIA ... 149
Transformer stock ... 149
Transformer manufacturers ... 150
UAE .. 151
Transformer stock ... 151
Transformer manufacturers ... 151
10.ASIA PACIFIC TRANSFORMER MARKETS .. 153
Investment as a % of GDP ... 159
CHINA ... 161
Transformer stock ... 161
UHV AC and HVDC transformer markets in China ... 161
Transformer Report

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese suppliers and foreign suppliers</td>
<td>163</td>
</tr>
<tr>
<td>UHV market participants</td>
<td>164</td>
</tr>
<tr>
<td>International firms in China’s UHV Market</td>
<td>165</td>
</tr>
<tr>
<td>Power and distribution transformers ≥ 220 kV \leq UHV</td>
<td>165</td>
</tr>
<tr>
<td>Power and distribution transformers ≤ 220 kV</td>
<td>166</td>
</tr>
<tr>
<td>Distribution transformers for MV and LV distribution</td>
<td>166</td>
</tr>
<tr>
<td>Market drivers</td>
<td>167</td>
</tr>
<tr>
<td>MEPS Standards</td>
<td>167</td>
</tr>
<tr>
<td>The structure of the Chinese power sector</td>
<td>168</td>
</tr>
<tr>
<td>Manufacturing industry review</td>
<td>169</td>
</tr>
<tr>
<td>JAPAN</td>
<td>172</td>
</tr>
<tr>
<td>Transformer stock</td>
<td>172</td>
</tr>
<tr>
<td>Market drivers</td>
<td>172</td>
</tr>
<tr>
<td>MEPS Standards</td>
<td>172</td>
</tr>
<tr>
<td>Transformer manufacturers</td>
<td>173</td>
</tr>
<tr>
<td>Overseas production</td>
<td>174</td>
</tr>
<tr>
<td>INDIA</td>
<td>176</td>
</tr>
<tr>
<td>Transformer stock</td>
<td>176</td>
</tr>
<tr>
<td>Electrification</td>
<td>177</td>
</tr>
<tr>
<td>Captive generation</td>
<td>177</td>
</tr>
<tr>
<td>Market drivers</td>
<td>177</td>
</tr>
<tr>
<td>MEPS Standards</td>
<td>178</td>
</tr>
<tr>
<td>Manufacturing industry review</td>
<td>178</td>
</tr>
<tr>
<td>Capacity and utilisation</td>
<td>178</td>
</tr>
<tr>
<td>INDONESIA</td>
<td>182</td>
</tr>
<tr>
<td>Transformer stock</td>
<td>182</td>
</tr>
<tr>
<td>Market drivers</td>
<td>182</td>
</tr>
<tr>
<td>Transformer manufacturers</td>
<td>182</td>
</tr>
<tr>
<td>KOREA</td>
<td>184</td>
</tr>
<tr>
<td>Transformer stock</td>
<td>184</td>
</tr>
<tr>
<td>Market drivers</td>
<td>184</td>
</tr>
<tr>
<td>Transformer manufacturers</td>
<td>184</td>
</tr>
<tr>
<td>TAIWAN</td>
<td>186</td>
</tr>
<tr>
<td>Transformer stock</td>
<td>186</td>
</tr>
<tr>
<td>Market drivers</td>
<td>186</td>
</tr>
<tr>
<td>Transformer manufacturers</td>
<td>186</td>
</tr>
<tr>
<td>THAILAND</td>
<td>188</td>
</tr>
<tr>
<td>Transformer stock</td>
<td>188</td>
</tr>
<tr>
<td>Market drivers</td>
<td>188</td>
</tr>
<tr>
<td>Transformer manufacturers</td>
<td>189</td>
</tr>
</tbody>
</table>

11. LAC TRANSFORMER MARKETS

<table>
<thead>
<tr>
<th>Country</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAZIL</td>
<td>190</td>
</tr>
<tr>
<td>Transformer stock</td>
<td>195</td>
</tr>
<tr>
<td>Market drivers</td>
<td>195</td>
</tr>
<tr>
<td>Manufacturing industry review</td>
<td>196</td>
</tr>
</tbody>
</table>
Transformer Report

Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>RECENT TRENDS IN TRANSFORMER CAPACITY, CENTRAL AND DISTRIBUTED</td>
<td>197</td>
</tr>
<tr>
<td>13</td>
<td>SOLAR PV SOLAR PV AND TRANSFORMERLESS INVERTERS</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Transformerless inverters</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>High Frequency Inverters (HF)</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Low Frequency Inverters (LF)</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>TL in Europe</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>TL in China</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>TL in the USA</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>TL in Australia</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Impact of TL inverters on the distribution transformer market</td>
<td>202</td>
</tr>
<tr>
<td>14</td>
<td>THE VALUE CHAIN - FROM MATERIALS TO CAPEX</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>The value chain at 6 levels</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Sales channels</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Utilities</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Manufacturers’ direct sales</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Distributor sales</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Raw material inputs</td>
<td>206</td>
</tr>
<tr>
<td>15</td>
<td>THE UTILITY LANDSCAPE</td>
<td>207</td>
</tr>
<tr>
<td>16</td>
<td>UTILITY CUSTOMER ANALYSIS</td>
<td>212</td>
</tr>
<tr>
<td>17</td>
<td>TRANSFORMER SALES AT RETAIL PRICE AND INSTALLED COST</td>
<td>220</td>
</tr>
<tr>
<td>18</td>
<td>GSU, UTILITY & INDUSTRIAL POWER AND DISTRIBUTION TRANSFORMER INSTALLED CAPACITY, NUMBERS AND AVERAGE DISTRIBUTION TRANSFORMER KVA PER UNIT</td>
<td>221</td>
</tr>
<tr>
<td>19</td>
<td>NETWORK TRANSFORMER LAYOUT</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>THE TRANSFORMATION PROCESS</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Stage 1</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Stage 3</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Stage 4</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Stage 5</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Network configurations for distribution - Radial, Loop and Network systems</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Review of regional utility network practices - The link from medium voltage to low voltage</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>North America</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Types of transformer</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Liquid dielectric transformers</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Dry-type transformers</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Gas filled transformers</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Evolution of power transformers by size and capacity</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Offshore systems</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Gas to Wire GTW</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>The development of high voltage transmission</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Ownership of power and distribution transformers</td>
<td>256</td>
</tr>
</tbody>
</table>
20. A REVIEW OF GENERATION

Voltage control using On Load Tap Changer (OLTC) .. 258
Reactive power control ... 258
Overvoltage .. 258
HIDDEN POWER < 1 MW

DG in Brazil ... 278
DG in China ... 278
HIDDEN POWER < 1 MW ... 279

21. HOSTING CAPACITY OF DISTRIBUTION NETWORKS AND DG PENETRATION

Overvoltage .. 283
Overloading and power loss problems .. 283
Power quality problem .. 283
Protection problems .. 283
Solutions ... 284
Network reconfiguration and reinforcement .. 284
Reactive power control .. 284
Voltage control using On Load Tap Changer (OLTC) .. 284
Active power curtailment ... 284
Transformer Report

Table of Contents

Battery energy storage technologies (BESS) .. 285
Costs .. 285
Conclusion .. 285

22. DISTRIBUTION TRANSFORMERS BY KVA UNIT CAPACITY .. 286

Europe ... 287
SELECTED EUROPEAN MARKETS .. 289
France .. 289
Germany .. 289
Ireland .. 289
Italy ... 289
Netherlands .. 289
Poland ... 289
Spain ... 290
UK ... 290
SELECTED ASIAN MARKETS .. 290
Philippines .. 290
India ... 290
Indonesia ... 290
Malaysia ... 291
Pakistan ... 291
Thailand .. 291
Vietnam .. 292
SELECTED PACIFIC MARKETS .. 292
Australia .. 292
New Zealand .. 294

23. THE LONG-TERM DEMAND CYCLE 1900-2050 .. 295

INSTALLED CAPACITY .. 295
INSTALLED CAPACITY VERSUS DEMAND ... 295
The China Factor .. 298
Demand versus supply ... 299

24. TRANSFORMER GENERATOR RATIOS - MVA:MW ... 300

25. SMART TRANSFORMERS .. 307

Smart transformers and the smart grid ... 307
Basic characteristics of smart transformers ... 309
The basic technical requirements of smart transformers ... 309
Intelligent transformer substations ... 309
Smart transformer in current infrastructure .. 310
Dissolved gas analysis (DGA) ... 310

26. N+1 STANDARD, N+2 AND 2N, REDUNDANCY AND REPLACEMENT .. 311

Network failure ... 311
Transformer failure .. 311
Industrial reliability .. 311
Levels of redundancy ... 312
N+1 Redundancy ... 312
N+2 Redundancy ... 312
Transformer Report

Table of Contents

2N Redundancy .. 312
Fault tolerance .. 312
2N+1 Redundancy .. 312
Network reliability .. 313
N+1 and the networks ... 313
Reliability standards SAI FI and SAIDI .. 314
Electricity transmission ... 315
Large power transformers (LPTs) ... 315
Transformer/generator ratios and redundancy .. 316
Generation .. 316
Transmission .. 316
Distribution .. 317

27. PRICE TRENDS AND FACTORS DRIVING TRANSFORMER PRICES

- PPI - Producer Price Index ... 318
- USA .. 318
- EU .. 319
- China .. 320
- Japan ... 320
- Factors impacting on manufacturing cost and selling price of transformers .. 321
- Manufacturing cost .. 321
- Selling price ... 321
- Cost of materials .. 321
- The core - electrical steel .. 322
- Amorphous steel .. 322
- The coil - windings - copper and aluminium .. 323
- Advantages of copper windings .. 323
- Disadvantages of copper windings ... 323
- Advantages of aluminium windings .. 323
- Disadvantages of aluminium windings ... 324
- Transformer oil .. 324
- Fluctuations in commodity prices ... 325
- Demand for transformers, market and industry trends .. 327
- Production capacity and utilisation .. 327

28. MEPS - MINIMUM ENERGY PERFORMANCE STANDARDS

- MEPS (Minimum Energy Performance Standards) .. 328
- United States ... 330
- Efficiency regulations .. 331
- Canada .. 331
- Brazil ... 332
- Mexico .. 333
- European Union .. 333
- The European Norms EN50588-1:2014 and EU No 548/2014 apply ... 335
- Australia and New Zealand ... 335
- Israel .. 335
- Vietnam .. 336
Transformer Report
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>336</td>
</tr>
<tr>
<td>China</td>
<td>337</td>
</tr>
<tr>
<td>Korea</td>
<td>338</td>
</tr>
<tr>
<td>India</td>
<td>338</td>
</tr>
<tr>
<td>Summary of efficiency standards</td>
<td>339</td>
</tr>
</tbody>
</table>

29. HIGH EFFICIENCY TRANSFORMERS ... 341

- Development of a new technology - amorphous core transformers 341
- The market for AMTs ... 342
- AMT manufacturers .. 343
- Amorphous metal ribbon manufacturers .. 343
- Amorphous metal transformers - AMTs ... 343

<table>
<thead>
<tr>
<th>Country</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>343</td>
</tr>
<tr>
<td>United States</td>
<td>344</td>
</tr>
<tr>
<td>India</td>
<td>344</td>
</tr>
<tr>
<td>Taiwan</td>
<td>345</td>
</tr>
<tr>
<td>Other</td>
<td>345</td>
</tr>
<tr>
<td>HTS – high temperature superconductor transformers 345</td>
<td></td>
</tr>
</tbody>
</table>

30. TRANSFORMER PRODUCTION CAPACITY .. 346

- Manufacturing capacity, global and by region 346
- Capacity utilisation .. 348
- North America (United States, Canada) .. 348

<table>
<thead>
<tr>
<th>Region</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>349</td>
</tr>
<tr>
<td>Europe</td>
<td>350</td>
</tr>
<tr>
<td>CIS</td>
<td>350</td>
</tr>
<tr>
<td>Mexico</td>
<td>351</td>
</tr>
</tbody>
</table>
| Latin America (excluding Mexico) .. 351
| China | 352 |
| India | 353 |
| Korea | 355 |
| Africa | 355 |
| South Africa | 355 |

31. THE SUPPLY CHAIN .. 356

- The political dimension of the global supply chains 356
- US Federal Executive Order - Telecoms ... 356
- Japanese programme to diversify Chinese supplies 358
- Supply of transformers ... 358
- Electrical system equipment .. 359
- US LPT Seizure ... 360
- Australia | 360 |
- Market impacts .. 360
- US supply of power transformers and LPTs .. 360
- Global supply chains ... 362
- Supply chains for transformer components 362
- The role of Wuhan in the global supply chain – the impact of Covid-19 | 363 |
Transformer Report

Table of Contents

The transformer supply chain ... 363
Key global supply chains for transformers .. 365
Reinhausen Machinenfabiken ... 365
Huaming/CZ ... 365
Hitachi ABB ... 365
Hyundai ... 365
Jin Li ... 366
SPX DETC ... 366
Brush ... 366
Crompton Greaves – CG Power ... 366
EHV bushings ... 366
Siemens ... 366
Trench ... 366
HSP Hochspannungsgeräte GmbH ... 366
Hitachi ABB ... 367
GE - Alstom .. 367
Lapp, USA and Germany – Pfisterer .. 368
Seves Group, France ... 368
Aditya Birla Nuvo Ltd, India ... 368
China ... 368
Disruptions & switching ... 368
Distribution transformers ... 368

32. GLOBAL MARKET SHARE POWER AND DISTRIBUTION TRANSFORMERS 369

33. LOGISTICS .. 370
An LPT logistical operation from China to the USA 370
Guidance for the safe transport of transformers 370
1. Design of transformers ... 371
2. Preparation of a Transformer .. 371
3. Faults or damages to transformers ... 371
4. Voyage Assessment .. 372
5. Transport execution .. 373
6. Handling .. 373
7. Securing .. 373
Impact Recorders .. 374
Rail transport ... 374
North America .. 375
Europe ... 375
Africa ... 375
Asia Pacific .. 375
Road transport ... 376
Rear wheel drive .. 378
Clearance ... 379
Alternative solutions ... 381

34. ELECTRIFICATION .. 383
Sub-Saharan Africa .. 388
Transformer Report

Table of Contents

Asia ... 388
MENA .. 388
Latin America .. 388
Europe .. 389
CIS ... 389
North America .. 389
The impact of electrification on the electrical supply industry 389

METHODOLOGY .. 391
Short term demand forecast ... 391
Long term demand cycle .. 391
Demand cycles and the market .. 392
StatPlan Energy Databases ... 392
Production and trade data ... 393
International and national information agencies ... 393
Industry interviews and cooperation .. 394
Review of the transformer databases ... 394
1. Utility/industry ownership ... 394
2. The proportion of GSU/transmission PTs ... 395
3. Redundancy ... 395
Transformation capacity ... 395

Figures

Figure 1: The global transformer population, GVA, 2020 ... 55
Figure 2: The global transformer fleet 2010-2020, generator and transformer capacity.... 55
Figure 3: LPT, 265 MVA, 525 kV .. 65
Figure 4: MPT 60 MVA, 275 kV ... 65
Figure 5: SPT with 12.5 MVA with OLTC (On-Load Tap Changer) 66
Figure 6: An 800 kV UHVDC converter transformer by ABB 66
Figure 7: Oil-filled distribution transformer .. 67
Figure 8: Dry-type distribution transformer .. 67
Figure 9: Pad-mounted distribution transformer ... 68
Figure 10: A bank of 3 single phase pole top distribution transformers for 3 phase supply: 68
Figure 11: The German Electricity Grid ... 71
Figure 12: American distribution system ... 74
Figure 13: European distribution system ... 75
Figure 14: Wiring diagram for 3 phase 4 wire delta-wye ... 78
Figure 15: Wiring diagram for 3 phase 4 wire .. 78
Figure 16: Electrical distribution system for a small building 82
Figure 17: Single rising main ... 82
Figure 18: Grouped supply ... 83
Figure 19: Individual floor supply ... 83
Figure 20: A large building using distributed transformers - splitting the system into two supply sections with transformer modules with 3 x 630 kVA each. .. 84
Figure 21: A large building using distributed transformers with main route busbars 85
Figure 22: Consumption of power transformers in US, 1990 to 2020, GVA 89
Transformer Report
Table of Contents

Figures

Figure 1: The global transformer population, GVA, 2020 .. 55
Figure 2: The global transformer fleet 2010-2020, generator and transformer capacity. 55
Figure 3: LPT, 265 MVA, 525 kV .. 65
Figure 4: MPT 60 MVA, 275 kV. .. 65
Figure 5: SPT with 12.5 MVA with OLTC (On-Load Tap Changer) 65
Figure 6: An 800 kV UHVDC converter transformer by ABB ... 66
Figure 7: Oil-filled distribution transformer .. 67
Figure 8: Dry-type distribution transformer .. 67
Figure 9: Pad-mounted distribution transformer ... 68
Figure 10: A bank of 3 single phase pole top distribution transformers for 3 phase supply ... 68
Figure 11: The German Electricity Grid .. 71
Figure 12: American distribution system .. 74
Figure 13: European distribution system .. 75
Figure 14: Wiring diagram for 3 phase 4 wire delta-wye ... 78
Figure 15: Wiring diagram for 3 phase 4 wire ... 78
Figure 16: Electrical distribution system for a small building .. 82
Figure 17: Single rising main .. 82
Figure 18: Grouped supply ... 83
Figure 19: Individual floor supply .. 83
Figure 20: A large building using distributed transformers - splitting the system into two supply sections with 2 transformer modules with $3 \times 630 \text{kVA}$ each 84
Figure 21: A large building using distributed transformers with main route busbars 85
Figure 22: Consumption of power transformers in US, 1990 to 2020, GVA............... 89
Figure 23: USA Electric power system with substation types ... 90
Figure 24: Imports of power transformers (Oil filled $\geq 10 \text{ MVA}$), into the United States from Canada, Mexico and Korea 2000-2017 $ value ... 98
Figure 25: Distribution voltages in Europe (EU 27) .. 112
Figure 26: RWE and E.ON reorganize the German power sector, splitting up Innogy...... 122
Figure 27: Oil price fiscal breakevens: oil price needed for the budget to break even (2020 projections) .. 146
Figure 28: Investment as a % of GDP, selected countries and economic groupings, 1980-2020 ... 160
Figure 29: Market shares for UHV AC and HVDC transformers in China 164
Figure 30: Market shares of leading transformer manufacturers for SGCC’s HV, MV and LV tenders .. 166
Figure 31: Structure of the Chinese electric power industry ... 168
Transformer Report

Table of Contents

Figure 32: Top 20 markets for solar PV additions, 2018 to 2022 ... 199
Figure 33: Distribution utility customers by regions, 1950 to 2030 .. 212
Figure 34: An example of a network before the meter, with Central and Distributed Generation ... 243
Figure 35: Basic scheme of an electric power system .. 244
Figure 36: The UK electrical power transmission and distribution system 246
Figure 37: The traditional centralised electricity system compared with distributed power ... 247
Figure 38: North American versus European distribution layouts ... 248
Figure 39: GTW development Options .. 254
Figure 40: The overall concept of GTW .. 255
Figure 41: Evolution of transformers in voltage kV and capacity MVA 256
Figure 42: Proportion of capacity (MVA) generator, utility and private industry ownership of power and distribution transformers by region, 2018 257
Figure 43: Composition of the retail cost of electricity ... 259
Figure 44: The Electrification Wheel .. 260
Figure 45: Distributed energy, gas and electricity ... 265
Figure 46: Overview of distributed generation (based on [2, 3]) and of typical uses 266
Figure 47: Distributed power history ... 267
Figure 48: Growth in distributed generation in the US, 2010 to 2019 .. 269
Figure 49: Residential distributed solar PV capacity, 2015 to 2050 270
Figure 50: Commercial distributed solar PV capacity, 2015 to 2050 270
Figure 51: The smart grid and distributed generation ... 271
Figure 52: Annual development of onshore wind energy capacity in Germany 272
Figure 53: Annual development of offshore wind energy capacity in Germany 273
Figure 54: Solar PV capacity in Germany, 1990 to 2019 ... 273
Figure 55: Total installed and annual capacity of solar PV in Italy, 2000 to 2017 274
Figure 56: Installed capacity wind power in Spain, 1998 to 2019 .. 275
Figure 57: The electricity network in the UK .. 276
Figure 58: International DSOs’ experience and rules of thumb for DG integration 282
Figure 59: HC enhancement techniques .. 284
Figure 60: Europe, MV/LV distribution transformer population in units and total MVA capacity, by unit capacity in kVA, 2020 ... 286
Figure 61: USA, MV/LV distribution transformer population in units and total MVA capacity, by unit capacity in kVA .. 287
Figure 62: Distribution transformer population in Europe, units by kVA rating, 2020 288
Figure 63: Distribution transformer population in Europe, total MVA by kVA rating, 2020 288
Figure 64: Installed capacity of power and distribution transformers, GVA, 1900 - 2050 ... 295
Figure 65: Global installed transformation capacity and demand, GVA, 1900 - 2050 296
Transformer Report

Table of Contents

Figure 66: Global utility transformation capacity installed base by region, GVA, 1900 - 2050 ... 298
Figure 67: Conventional grid with unidirectional power flow .. 308
Figure 68: Active distribution grid with intelligent transformer substations 308
Figure 69: Producer Price Indices for power and distribution transformers in the United States 1967 to 2020 .. 319
Figure 70: EU 28 Producer Price Index for industrial manufactures 2012 to 2020 319
Figure 71: China Producer Price Index for industrial goods 2016 to 2021 320
Figure 72: Japan Producer Price Index for electrical machinery and equipment 1996 to 2021 .. 320
Figure 73: The manufacturing processes for CRGO and CNRGO 322
Figure 74: Copper prices 1970 to 2020 ... 326
Figure 75: Aluminium prices 1970 to 2020 ... 326
Figure 76: Transformer commodity price index 2009 to 2018 ... 327
Figure 77: The vast majority of countries have yet to take such action 329
Figure 78: The world’s largest HVDC transformer at Xiangjiaba, China 367
Figure 79: Global market share power and distribution transformers, $ value, 2020 369
Figure 80: Schnabel car with load ... 376
Figure 81: The largest load ever transported by road in the United Kingdom 377
Figure 82: Goldhofer heavy duty load ... 378
Figure 83: Goldhofer rear wheel drive vehicle ... 378
Figure 84: The trailer approaches a narrow turning ... 379
Figure 85: The trailer’s rear wheels begin the turn .. 379
Figure 86: The trailer has turned the corner ... 379
Figure 87: Overhead obstructions ... 381
Figure 88: Transformer off the road .. 382
Figure 89: Share of people without electricity access for developing countries, 2016 383
Figure 90: World electrification - % of households with electricity, 1900 - 2050 384
Figure 91: World electrification – number and % of households with electricity, 1900 - 2050 .. 385
Figure 92: Selected major countries - % of households with electricity, 1900 - 2050 386
Figure 93: Selected major countries – Number of households with electricity, 1900 - 2050 .. 386
Figure 94: Regional totals of electrified households 2010 to 2050 387
Figure 95: Additions of electrified households in each decade by region, 2010 to 2050 387
Figure 96: Diagram of new plus total replacement capacity .. 392
Transformer Report

Tables
Table 1: Transformer demand, GVA and $ in real and nominal values, 2019-26 53
Table 2: World transformer demand forecast, .. 53
Table 3: World distribution transformer demand forecast, 2019-2026, Units 53
Table 4: Ownership of power and distribution transformers by capacity, 2020 54
Table 5: The global transformer fleet before the meter by transformer type, GVA, 2020 56
Table 6: The global transformer fleet by transformer type, 2010-2020, generator & transformer capacity... 56
Table 7: Typical applications for distribution transformer technologies 73
Table 8: Six substation and industrial and commercial transformer types used behind the meter.. 77
Table 9: Installed base of LV dry type transformers in commercial buildings in the USA.... 79
Table 10: Installed base of LV dry type transformers in commercial buildings in USA by kVA capacity .. 79
Table 11: Population of electric motors in US industry, 2002... 80
Table 12: Population and residential housing stock in the United States and Europe 81
Table 13: North America, total transformer sales forecast at ex-factory cost, 2019-2026, $ nominal million ... 87
Table 14: North America, total transformer sales by voltage, HV, MV, LV 2019-2026, $ nominal million ... 87
Table 15: North America, CGSU and network power transformer sales forecast, 2019-2026, MVA .. 87
Table 16: North America, DGSU and network MV distribution transformer sales forecast, 2019-2026, MVA .. 87
Table 17: North America, network and user LV transformer sales forecast, 2019-2026, MVA ... 88
Table 18: North America, distribution transformer MV and LV before the meter sales forecast, 2019-2026, units .. 88
Table 19: North America, LV transformers after the meter sales forecast, 2019-2026, units ... 88
Table 20: North America, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, 2019-2026, MVA capacity .. 88
Table 21: US power and distribution transformer stock, 2020 ... 89
Table 22: Detailed shipment data for power and distribution transformers in the US, 2009 ... 90
Table 23: Market shares of Power Transformer Producers in the United States, 2016 96
Table 24: Mexican power and distribution transformer stock, 2020 103
Table 25: Europe, total transformer sales forecast at ex-factory cost, 2019-2026, $ nominal million .. 105
Table 26: Europe, total transformer sales by voltage, HV, MV, LV 2019-2026, $ nominal million 106
Table 27: Europe, CGSU and network power transformer sales, 2019-2026, MVA........... 106
Transformer Report

Table of Contents

Table 28: Europe, DGSU and network MV distribution transformer sales, 2019-2026, MVA ... 107
Table 29: Europe, network and user LV distribution transformer sales, 2019-2026, MVA ... 108
Table 30: Europe, distribution transformer MV and LV before the meter sales, 2019-2026, units ... 109
Table 31: Europe, LV transformer after the meter sales, 2019-2026, units ... 110
Table 32: Europe, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, 2019-2026, MVA capacity ... 111
Table 33: Annual demand power and distribution transformers ... 117
Table 34: French power and distribution transformer stock, 2020 ... 117
Table 35: Annual demand power and distribution transformers ... 120
Table 36: German power and distribution transformer stock, 2020 ... 120
Table 37: Annual demand power and distribution transformers ... 124
Table 38: Italian power and distribution transformer stock, 2020 ... 124
Table 39: Annual demand power and distribution transformers ... 125
Table 40: Spanish power and distribution transformer stock, 2020 ... 125
Table 41: Annual demand power and distribution transformers ... 126
Table 42: Swiss power and distribution transformer stock, 2020 ... 126
Table 43: Annual demand power and distribution transformers ... 128
Table 44: UK power and distribution transformer stock, 2020 ... 128
Table 45: Annual demand power and distribution transformers ... 131
Table 46: Turkish power and distribution transformer stock, 2020 ... 131
Table 47: CIS, total transformer sales forecast at ex-factory cost, 2019-2026, $ nominal million ... 133
Table 48: CIS, total transformer sales by voltage, HV, MV, LV 2019-2026, $ nominal million 133
Table 49: CIS, CGSU and network power sales, 2019-2026, MVA ... 133
Table 50: CIS, DGSU and network MV distribution sales, 2019-2026, MVA ... 133
Table 51: CIS network and user LV transformer sales, 2019-2026, MVA ... 133
Table 52: CIS distribution transformer MV and LV before the meter sales, 2019-2026, Units ... 133
Table 53: CIS LV transformer after the meter sales, 2019-2026, Units ... 134
Table 54: CIS, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, 2019-2026, MVA capacity ... 134
Table 55: Annual demand power and distribution transformers ... 135
Table 56: Russian power and distribution transformer stock, 2020 ... 135
Table 57: ME & Africa, total transformer sales forecast at ex-factory cost, 2019-2026, $ nominal ... 138
Table 58: Middle East and Africa, total transformer sales by voltage, HV, MV, LV 2019-2026, MVA ... 139
Table 59: ME & Africa, CGSU and network power transformer sales, 2019-2026, MVA 140
Table 60: ME & Africa, DGSU and network MV distribution transformer sales, 2019-2026, MVA.. 141
Table 61: ME & Africa, network and user LV distribution transformer sales, 2019-2026, MVA.. 142
Table 62: ME & Africa, distribution transformer MV and LV before the meter sales, 2019-2026, Units .. 143
Table 63: ME & Africa, LV transformer after the meter sales, 2019-2026, Units .. 144
Table 64: Middle East, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, .. 145
Table 65: North Africa, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, .. 145
Table 66: Sub-Saharan Africa, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, .. 145
Table 67: Annual demand power and distribution transformers ... 147
Table 68: Iranian power and distribution transformer stock, 2020 ... 147
Table 69: Annual demand power and distribution transformers ... 149
Table 70: Saudi Arabian power and distribution transformer stock, 2020 .. 149
Table 71: Annual demand power and distribution transformers ... 151
Table 72: UAE power and distribution transformer stock, 2020 ... 151
Table 73: Asia Pacific, total transformer sales forecast at ex-factory cost, 2019-2026, $ nominal 153
Table 74: Asia Pacific, total transformer sales by voltage, HV, MV, LV 2019-2026, $ nominal million 154
Table 75: Asia Pacific, CGSU and network power transformer sales, 2019-2026, MVA 154
Table 76: Asia Pacific, DGSU and network MV distribution transformer sales, 2019-2026, MVA 155
Table 77: Asia Pacific, network and user LV transformer sales, 2019-2026, MVA................................. 156
Table 78: Asia Pacific, distribution transformer MV and LV before the meter sales, 2019-2026, Units 157
Table 79: Asia Pacific, LV transformer after the meter sales, 2019-2026, Units.. 158
Table 80: Asia Pacific, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, .. 159
Table 81: Annual demand power and distribution transformers ... 161
Table 82: Chinese power and distribution transformer stock, 2020 ... 161
Table 83: The operational UHV circuits in China in 2019 ... 161
Table 84: UHV circuits under construction in China in 2019 ... 162
Table 85: Key Technologies for UHV AC systems .. 163
Table 86: Key technologies for UHV DC systems ... 165
Table 87: Japanese power and distribution transformer stock, 2020 ... 172
Table 88: Transformer manufacturers in Japan .. 174
Table 89: Annual demand power and distribution transformers ... 176
Transformer Report

Table of Contents

Table 90: Indian power and distribution transformer stock, 2020 .. 176
Table 91: Indian transformer production capacity GVA .. 179
Table 92: Transformer manufacturers in India ... 181
Table 93: Annual demand power and distribution transformers ... 182
Table 94: Indonesian power and distribution transformer stock, 2020 ... 182
Table 95: Annual demand power and distribution transformers ... 184
Table 96: Korean power and distribution transformer stock, 2020 .. 184
Table 97: Annual demand power and distribution transformers ... 186
Table 98: Taiwanese power and distribution transformer stock, 2020 .. 186
Table 99: Annual demand power and distribution transformers ... 188
Table 100: Thai power and distribution transformer stock, 2020 .. 188
Table 101: LAC, total transformer sales forecast at ex-factory cost, 2019-2026, $ nominal million 191
Table 102: LAC, total transformer sales by voltage, HV, MV, LV 2019-2026, $ nominal million 191
Table 103: LAC, CGSU and network power transformer sales, 2019-2026, MVA 192
Table 104: LAC, DGSU and network MV distribution transformer sales, 2019-2026, MVA 192
Table 105: LAC, network and user LV transformer sales, 2019-2026, MVA ... 193
Table 106: LAC, network and user LV transformer sales, 2019-2026, Units.. 193
Table 107: Latin America, LV transformer after the meter sales, 2019-2026, Units 194
Table 108: Latin America, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, 194
Table 109: Annual demand power and distribution transformers ... 195
Table 110: Brazilian power and distribution transformer stock, 2020 ... 195
Table 111: Installed transformer capacity, GVA, 1950 to 2020 .. 197
Table 112: Costs and mark-up from Bill of Materials to Capex ... 204
Table 113: Electricity transmission and distribution companies of the world 207
Table 114: Utility customer analysis; Transmission and Distribution utilities by size, World by Region, 2019 ... 212
Table 115: Utility customer analysis; Transmission and Distribution utilities by size, Europe, 2019 ... 213
Table 116: Utility customer analysis; Transmission and Distribution utilities by size, CIS, 2019 ... 214
Table 117: Utility customer analysis; Transmission and Distribution utilities by size, Middle East, 2019 ... 214
Table 118: Utility customer analysis; Transmission and Distribution utilities by size, North Africa, 2019 .. 215
Table 119: Utility customer analysis; Transmission and Distribution utilities by size, Sub-Saharan Africa, 2019 ... 215
Table 120: Utility customer analysis; Transmission and Distribution utilities by size, Sub-Saharan Africa, 2015 ... 216
Table 120: Utility customer analysis; Transmission and Distribution utilities by size, Asia, 2019
Table 121: Utility customer analysis; Transmission and Distribution utilities by size, Pacific, 2019
Table 122: Utility customer analysis; Transmission and Distribution utilities by size, North America, 2019
Table 123: Utility customer analysis; Transmission and Distribution utilities by size, South America, 2019
Table 124: Utility customer analysis; Transmission and Distribution utilities by size, Central America, 2019
Table 125: Transformer demand at ex-factory and installed cost by region, 2018-2025, $ million
Table 126: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, World, 2020
Table 127: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, World, 2020
Table 128: Number and average capacity in kVA of Distribution transformers by country and ownership, World, 2020
Table 129: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, North America, 2020
Table 130: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, North America, 2020
Table 131: Number and average capacity in kVA of Distribution transformers by country and ownership, North America, 2020
Table 132: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, Europe, 2020
Table 133: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, Europe, 2020
Table 134: Number and average capacity in kVA of distribution transformers by country and ownership, Europe, 2020
Table 135: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, CIS, 2020
Table 136: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, CIS, 2020
Table 137: Number and average capacity in kVA of distribution transformers by country and ownership, CIS, 2020
Table 138: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, Middle East & North Africa, 2020
Table 139: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, Middle East & North Africa, 2020
Transformer Report

Table of Contents

Table 136: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, CIS, 2020 .. 226
Table 137: Number and average capacity in kVA of distribution transformers by country and ownership, CIS, 2020.. 227
Table 138: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, Middle East & North Africa, 2020.. 228
Table 139: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, Middle East & North Africa, 2020.. 229
Table 140: Number and average capacity in kVA of distribution transformers by country and ownership, Middle East and North Africa, 2020 230
Table 141: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, Sub-Saharan Africa, 2020.. 231
Table 142: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, Sub-Saharan Africa, 2020........... 232
Table 143: Number and average capacity in kVA of distribution transformers by country and ownership, Sub-Saharan Africa, 2019.. 233
Table 144: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, Asia Pacific, 2020.. 235
Table 145: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, Asia Pacific, 2020...................... 236
Table 146: Number and average capacity in kVA of distribution transformers by country and ownership Asia Pacific, 2020.. 237
Table 147: Generator, Power and Distribution & LV User transformer capacity (MVA) by country, LAC, 2020... 238
Table 148: Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, LAC, 2020 239
Table 149: Number and average capacity in kVA of distribution transformers by country and ownership, LAC, 2020 ... 240
Table 150: Highest voltage levels of distribution in Europe.. 245
Table 151: Average consumers per LV distribution transformer in selected countries, 2018 .. 251
Table 152: Commonly used DG technologies with size.. 268
Table 153: Number of installed solar PV capacity plants by size in the UK, 2010 to 2018276
Table 154: Installed solar PV capacity plants by capacity MW in the UK, 2010 to 2018... 277
Table 155: Population of distribution transformers in Netherlands by kVA rating 289
Table 156: Population of utility owned distribution transformers Meralco and two smaller utilities in Luzon and Mindanao... 290
Table 157: Population of utility owned distribution transformers in Pakistan by kVA rating.. 291
Table 158: Population of utility owned distribution transformers in PEA by kVA rating..... 291
Table 159: Population of utility owned distribution transformers in Vietnam by kVA rating. ... 292
Table 160: Utility distribution transformer population in Australia by kVA rating, 2019 292
Table 161: Private distribution transformer population in Australia by kVA rating, 2019 .. 293
Table 162: Total distribution transformer population in Australia by kVA rating, 2019 293
Table 163: Distribution transformer population in New Zealand by kVA rating, 2018 294
Table 164: Ratios of transformation capacity (MVA) to generating capacity (MW), World, 2020 ... 300
Table 165: Ratios of transformation capacity (MVA) to generating capacity (MW), Europe, 2020 .. 301
Table 166: Ratios of transformation capacity (MVA) to generating capacity (MW), CIS, ‘ 2020 .. 302
Table 167: Ratios of transformation capacity (MVA) to generating capacity (MW), Middle East and North Africa, 2020 ... 303
Table 168: Ratios of transformation capacity (MVA) to generating capacity (MW), Sub-Saharan Africa, 2020 .. 304
Table 169: Ratios of transformation capacity (MVA) to generating capacity (MW), Asia Pacific, 2020 .. 305
Table 170: Ratios of transformation capacity (MVA) to generating capacity (MW), North America, 2020 .. 306
Table 171: Ratios of transformation capacity (MVA) to generating capacity (MW), Latin America, 2020 .. 306
Table 172: Cost of materials .. 321
Table 173: Network losses by region ... 328
Table 174: A summary of liquid filled distribution transformer efficiency programmes 339
Table 175: Summary of dry-type distribution transformer efficiency programmes 340
Table 176: Manufacturers of energy efficient transformers in China, 2013 344
Table 177: World production capacity for transformers, GVA, 2019 347
Table 178: Global leaders’ production capacity power and distribution transformers, GVA, 2019 ... 347
Table 179: CIS, production capacity power and distribution transformers, GVA, 2013 350
Table 180: China, domestic production capacity power and distribution transformers, GVA, 2019 ... 352
Table 181: India, production capacity power and distribution transformers, GVA, 2007 - 2020 ... 354
Table 182: Population and electrical parameters of South Asia and Sub-Saharan Africa.. 389
THE POWER AND DISTRIBUTION TRANSFORMER MARKET

Total demand for power and distribution transformers in 2019 is estimated at XX GVA, rising by a cagr of XX% to XX GVA in 2026. The value in 2019 was $XX billion at ex-factory cost, increasing in nominal values by a cagr of XX% to $XX billion in 2026.

Table 1: Power and distribution transformer demand, MVA and $ in real and nominal values

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value nominal $ million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value real $ million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total GVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/MVA nominal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/MVA real</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With surplus production capacity and falling metal prices, transformer prices...

Table 4: World transformer demand forecast, GSU/PT transmission/DT distribution, 2019-2026, GVA

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGSU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network PTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGSU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network DTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: World distribution transformer demand forecast, 2019-2026, Units

<table>
<thead>
<tr>
<th>'000 DT units</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7 illustrates the growth of distributed generation. Although still a minority share of total generator capacity, by 2020 it had risen to three times its level of XX GVA in 2010.

Table 3: The global transformer fleet by transformer type, 2010-2025, generator and transformer capacity
NORTH AMERICAN TRANSFORMER MARKETS

Transformer stock

There are plentiful statistics about distribution transformers in the United States, including historical tables which enable us to plot the development of the distribution transformer stock over time in numbers and capacity and so to chart the development of transformers in size. The US distribution transformer fleet is the largest in the world, and accounts for XX% of the global total of DT units. There is less information for power transformers.

Table 4: US power and distribution transformer stock, 2010

<table>
<thead>
<tr>
<th></th>
<th>MVA</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTs</td>
<td>GSU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total PTs</td>
<td></td>
</tr>
<tr>
<td>DTs</td>
<td>GSU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total DTs</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>PTs + DTs</td>
<td></td>
</tr>
</tbody>
</table>

Sources: DOE, various reports, StatPlan estimates

The total asset value of the North American power system is estimated around $1 trillion, with approximately 60% invested in power plants, 30% in distribution facilities, and 10% in transmission facilities. America operated a fleet of 21,892 generators in November 2018. Roughly 5,600 distributed energy facilities typically combine heat and power generation.

The North American market consists of the United States, Canada and Mexico. In previous editions Mexico was included in the LAC region. The United States market for power and distribution transformers is predicted to grow at a cagr of XX% in nominal value from XX billion in 2019 to XX billion in 2026. Demand for power transformers was strong in the latter half of 2019 and the first half of 2020, and has remained strong despite the Covid pandemic because of the investment plans already in place. Distribution transformer demand held up with an increasing population and the growth of renewables. Consumption of transformers in the United States has fluctuated over the last 30 years and has not risen constantly. Notably, the figures for 2009 were depressed as was the case in most countries, due to the financial crisis. In volume terms demand has risen steadily since then but in value growth has been held back by declining commodity prices and excess production capacity around the world.
Table 5: North America, total transformer sales forecast at ex-factory cost, 2019-2026, $ nominal million

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>All transformers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: North America, total transformer sales by voltage, HV, MV, LV 2019-2026, $ nominal million

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGSU + NET MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: North America, CGSU and network power transformer sales forecast, 2019-2026, MVA capacity

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8: North America, DGSU and network MV distribution transformer sales forecast, 2019-2026, MVA capacity

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9: North America, network and user LV transformer sales forecast, 2019-2026, MVA

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10: North America, distribution transformer MV and LV before the meter sales forecast, 2019-2026, units

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11: North America, LV transformers after the meter sales forecast, 2019-2026, units

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12: North America, transformer by type - CGSU, Net PT, DGSU, Net DT - sales forecast, 2019-2026, MVA capacity

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV CGSU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HV NET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGSU MV & LV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV NET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV NET & USER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Generator, Power and Distribution & LV User transformer capacity (MVA) by country, World, 2020

<table>
<thead>
<tr>
<th>Generation</th>
<th>Transformer capacity</th>
<th>Before the meter</th>
<th>After the meter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network GSU Power</td>
<td>Distribution GSU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network EHV/MV EHV/MV</td>
<td>MV/LV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Grid & User EH/MV/LV LV</td>
<td>LV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW MVA MVA MVA MVA MVA MVA MVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia Herze.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regions 8

Europe				
CIS				
Middle east				
North Africa				
Sub-Saharan Africa				
AsiaPacific				
North America				
Latin America				
World				

Countries 156

Transformer Report Ed 9 2021
Sample Pages

Generator, Utility and Industrial Power and Distribution transformer capacity (MVA) by country and ownership, World, 2020

<table>
<thead>
<tr>
<th></th>
<th>Central generator</th>
<th>Network utility</th>
<th>Network industry</th>
<th>Distribution generator</th>
<th>Network utility</th>
<th>Network industry</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GSU</td>
<td>Power</td>
<td>Power</td>
<td>GSU</td>
<td>Distribution</td>
<td>Distribution</td>
<td>Grid</td>
</tr>
<tr>
<td></td>
<td>EHV/MV</td>
<td>EHV/MV</td>
<td>EHV/MV</td>
<td>MV/LV</td>
<td>MV/LV</td>
<td>MV/LV</td>
<td>HV/MV/LV</td>
</tr>
<tr>
<td></td>
<td>MVA</td>
<td>MVA</td>
<td>MVA</td>
<td>MVA</td>
<td>MVA</td>
<td>MVA</td>
<td>MVA</td>
</tr>
<tr>
<td>Albania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia Herze.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regions 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle east</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AsiaPacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Countries 156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number and average capacity in kVA of Distribution transformers by country and ownership, World, 2020

<table>
<thead>
<tr>
<th>Distribution transformers</th>
<th>Users</th>
<th>Average capacity per transformers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td>Utility</td>
<td>Industry</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td>World</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION TRANSFORMERS BY kVA UNIT CAPACITY

As already outlined in the chapter providing information on the low voltage segment, there are two basic models for distribution systems, the European and the American, with combinations of the two employed by various countries. These models use different mixtures of distribution transformer, with the European system having a higher concentration of larger capacity higher voltage MV transformers and fewer small units, while the America system has a large number of small units nearer to the customer. The difference in the total configuration is marked. The distribution system in North America has 35% more capacity than the European system with 3,807 GVA versus 2,827 GVA, but it has 10 times more distribution transformers with 79 million DTs versus 7.2 million, the largest base of distribution transformers in the world. In each case the capacity of the higher voltage MV transformers has been increasing in the last two decades.

Europe, MV/LV distribution transformer population in units and total GVA capacity, by unit capacity in kVA, 2020

USA, MV/LV distribution transformer population in units and total MVA capacity, by unit capacity in kVA
HOSTING CAPACITY OF DISTRIBUTION NETWORKS AND DG PENETRATION

Renewable energy is rapidly developing across the world in response to technical, economic and environmental developments, as well as political and social initiatives. In the past, distribution systems were distinguished by the unidirectional power flow from centralised power generation stations to transmission and distribution networks. Nowadays, the deployment of DG technologies such as solar PV and wind energy resources in electrical power systems have changed the conventional power flow directions. Excessive penetration of distributed generation (DG) systems into electrical networks may lead to various problems and operational limit violations, such as over and under voltages, excessive line losses, overloading of transformers and feeders, protection failure and high harmonic distortion levels exceeding the limits of international standards.

In deregulated energy markets, a conflict of interest has been found among the DG owners/investors and DSOs, as the DG investors are looking forward to more and more DG integration into electrical networks, while DSOs are concerned about excessive DG penetration problems. These problems occur when the system exceeds its hosting capacity (HC) limit. Hosting capacity is defined as the level of penetration that a particular technology can connect to a distribution network without causing power quality problems. HC as a terminology was not previously used in electrical applications. However, it has been used in other domains, such as the computer sciences, where it is used to define the capacity of a web server to host many incoming access requests. The connection of solar PV generation in LV distribution networks has grown rapidly in recent years. PV microgeneration is characterised by low capacity factor and high intermittence, with the problem of causing networks to exceed their HC.

In a survey of more than 100 electric utilities across 23 countries carried out in 2018 it was found that DSO’s have economic concerns regarding the booming DG deployment worldwide. Utilities believe that they will suffer from revenue dropping as a consequence of high DG penetration. 59% of DSOs highlighted that the biggest DG-related impact on a utility network's HC comes from small-scale energy prosumers who are driving low voltage DG units, followed by medium or high-voltage connected DG such as a large-scale solar plant.

Authorities and distribution operators want HC limits to be established, i.e. the amount of PV that can be connected to the network without violating any of the operating conditions defined by regulations, in order to preserve the system integrity.................................
THE VALUE CHAIN - FROM MATERIALS TO CAPEX

The cost of any product such as transformers or switchgear can be measured in a number of ways, from being a piece of unworked metal, to its final installation in working order and finally as a constituent of capital expenditure. Different price levels are important in this supply chain, and the point of interest in the chain depends on the business to which the value is being applied. The value chain starts with the input of raw materials, such as cold rolled steel, GOES, copper, aluminium etc. These inputs typically constitute from 60-80% of the manufacturing cost of a finished product.

The value chain at 6 levels

1. **BOM, bill of materials** - Metal producers and refiners are concerned about the prices they can get for their output in its basic form, ingots, rods, plates etc. For the equipment manufacturers this price translates into the BOM (bill of materials) as a cost of production.

2. **Manufactured cost** - Adding the cost of fabricating the materials into finished products produces the manufactured cost.

3. **Factory gate price (MSP)** - The addition of non-manufacturing costs such as sales and finance costs brings it up to the factory gate price or manufacturer’s selling price. This does not include any transport cost. (Note: factory gate price is sometimes quoted with manufacturer’s profit and sometimes not.)

4. **Buyer’s price (equivalent to RSP)** - Products such as electrical equipment is almost always sold with a multi-channel strategy. Power and distribution transformers are a good example; there are usually two sales channels. Power and large distribution transformers are bespoke items, each one manufactured to a unique design for a unique purpose. They

The table below shows the costs and mark-up from Bill of Materials to Capex:

<table>
<thead>
<tr>
<th>Value chain level</th>
<th>Capex</th>
<th>Power Transformers</th>
<th>Distribution Transformers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark-up on MSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark-up on RSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark-up on MSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark-up on RSP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End user total outgoings

- **CAPEX**: 60%
- **Structural, indirect and owner’s cost**: 106%
- **Equipment purchase price**: 106%
- **Installed cost**: 106%
- **Transport and installation**: 106%
- **Buyer’s price**: 106%
- **Distributor**: 106%
- **Final price**: 106%
RECENT TRENDS IN TRANSFORMER CAPACITY, CENTRAL AND DISTRIBUTED, NEW & REPLACEMENT

In the last 70 years the global electrical supply infrastructure has multiplied at an accelerating rate, demonstrated by the growth of the transformer base from XXX GVA in 1950 to XX GVA in 2020 and it will exceed XX GVA by 2030. The development of the transmission and distribution grids has not only been in size but also in composition. Step down transformers, in both the transmission and distribution networks have increased in size, with DTs increasing in average capacity from XX kW in 2000 to XX kW today. These have been long term evolutions over the last seven decades, but the generation landscape is experiencing a radical realignment. These increases have been due to different drivers.

The transmission networks have increased capacity in the ten years from 2010 to 2020 at a cagr of XX% from XX GVA to XX GVA and distribution at XX% from XX GVA to XX GVA. Transmission capacity continues to grow to meet increasing demand and has been accelerated by the large expansion of utility scale wind and solar power. Distribution is also growing to meet increasing demand, but the greater part of expansion is due to increased electrification in the developing world.
UTILITY CUSTOMER ANALYSIS

In 2019 the estimated number of electricity consumers in the world was XXX million supplied by XXX DSOs. The total for China is summarised in two holding companies (SGCC and CSG), which own about 3,000 local DSOs.

Figure 1: Distribution utility customers by regions, 1950 to 2030

Table 13: Utility customer analysis; Transmission and Distribution utilities by size, World by Region, 2019

<table>
<thead>
<tr>
<th>Country</th>
<th>Total electricity connections</th>
<th>DSOs' customer base</th>
<th>Number of Electricity Transcos</th>
<th>Number of Electricity DSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle East</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: StatPlan Utility Customer Analysis Report
THE LONG-TERM DEMAND CYCLE 1900-2050

INSTALLED CAPACITY

Global installed transformer capacity has risen every year throughout the last and current centuries, from XX GVA in 1900 to XXX GVA in 2020. The growth has been linear and it will continue as such until it……………………….

Figure 1: Installed capacity of power and distribution transformers, GVA, 1900 – 2050

Growth of installed transformer capacity is linear, but demand for equipment is cyclical.

Figure 2: Global installed transformation capacity and demand 1900 - 2050, GVA
PRICE TRENDS AND FACTORS DRIVING TRANSFORMER PRICES

The prices of electrical equipment have been volatile over the years and will continue to be so. Many factors contribute to this. The principal factors influencing transformer prices are:

- Demand for transformers.
- Production capacity.
- Input prices of raw materials
- The economic and financial climate.
- Inflation.

PPI - Producer Price Index

The principal producing countries for power and distribution transformers are the EU, (especially Germany, Italy and France, followed by Poland, Portugal, Finland and Croatia), the USA, Japan, Korea and China. The following sections show the Producer Price Index figures for industrial manufactures, except..................

Covid-19..................